摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(3-nitro-1H-1,2,4-triazol-1-yl)acetohydrazide

中文名称
——
中文别名
——
英文名称
2-(3-nitro-1H-1,2,4-triazol-1-yl)acetohydrazide
英文别名
2-(3-nitro-1,2,4-triazol-1-yl)acetohydrazide
2-(3-nitro-1H-1,2,4-triazol-1-yl)acetohydrazide化学式
CAS
——
化学式
C4H6N6O3
mdl
MFCD00740409
分子量
186.13
InChiKey
JBMRIQFRAFGFKN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.7
  • 重原子数:
    13
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    132
  • 氢给体数:
    2
  • 氢受体数:
    6

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Unique Azolyl Acylhydrazonyl Hybridization of Aloe Emodins to Access Potential Antibacterial Agents
    摘要:
    Comprehensive Summary

    A type of unique azole‐hybridized acylhydrazonyl aloe emodins (AAEs) were developed as new antibacterial agents for combating bacterial infections. Some target AAEs showed strong antibacterial activities, especially, tetrazolylthioether AAE 27a exhibited broad antibacterial spectrum with 16—256 folds and 8—64 folds more active antibacterial efficacy than the reference drugs aloe emodin and norfloxacin, respectively. Tetrazolylthioether AAE 27a also gave low hemolysis and cytotoxicity, as well as favorable bioavailability. Preliminary mechanism explorations revealed that tetrazolylthioether AAE 27a could cause bacterial membrane depolarization and damage the cell membrane, resulting in nucleic acid leakage. Moreover, compound 27a could intercalate into DNA to impede its replication and form supramolecular 27a‐DNA gyrase complex to disturb the function of DNA gyrase. These findings would provide valuable insights for the further exploration of azolyl acylhydrazonyl aloe emodins as new potential antibacterial candidates.

    DOI:
    10.1002/cjoc.202400160
  • 作为产物:
    参考文献:
    名称:
    Unique Azolyl Acylhydrazonyl Hybridization of Aloe Emodins to Access Potential Antibacterial Agents
    摘要:
    Comprehensive Summary

    A type of unique azole‐hybridized acylhydrazonyl aloe emodins (AAEs) were developed as new antibacterial agents for combating bacterial infections. Some target AAEs showed strong antibacterial activities, especially, tetrazolylthioether AAE 27a exhibited broad antibacterial spectrum with 16—256 folds and 8—64 folds more active antibacterial efficacy than the reference drugs aloe emodin and norfloxacin, respectively. Tetrazolylthioether AAE 27a also gave low hemolysis and cytotoxicity, as well as favorable bioavailability. Preliminary mechanism explorations revealed that tetrazolylthioether AAE 27a could cause bacterial membrane depolarization and damage the cell membrane, resulting in nucleic acid leakage. Moreover, compound 27a could intercalate into DNA to impede its replication and form supramolecular 27a‐DNA gyrase complex to disturb the function of DNA gyrase. These findings would provide valuable insights for the further exploration of azolyl acylhydrazonyl aloe emodins as new potential antibacterial candidates.

    DOI:
    10.1002/cjoc.202400160
点击查看最新优质反应信息

文献信息

  • Unique Azolyl Acylhydrazonyl Hybridization of Aloe Emodins to Access Potential Antibacterial Agents
    作者:Yi‐Xin Wang、Zhao Deng、Aisha Bibi、Bo Fang、Cheng‐He Zhou
    DOI:10.1002/cjoc.202400160
    日期:——
    Comprehensive Summary

    A type of unique azole‐hybridized acylhydrazonyl aloe emodins (AAEs) were developed as new antibacterial agents for combating bacterial infections. Some target AAEs showed strong antibacterial activities, especially, tetrazolylthioether AAE 27a exhibited broad antibacterial spectrum with 16—256 folds and 8—64 folds more active antibacterial efficacy than the reference drugs aloe emodin and norfloxacin, respectively. Tetrazolylthioether AAE 27a also gave low hemolysis and cytotoxicity, as well as favorable bioavailability. Preliminary mechanism explorations revealed that tetrazolylthioether AAE 27a could cause bacterial membrane depolarization and damage the cell membrane, resulting in nucleic acid leakage. Moreover, compound 27a could intercalate into DNA to impede its replication and form supramolecular 27a‐DNA gyrase complex to disturb the function of DNA gyrase. These findings would provide valuable insights for the further exploration of azolyl acylhydrazonyl aloe emodins as new potential antibacterial candidates.

查看更多