Material Safety Data Sheet Section 1. Identification of the substance Product Name: D-2-Nitrophenylalanine Synonyms: Section 2. Hazards identification Harmful by inhalation, in contact with skin, and if swallowed. Section 3. Composition/information on ingredients. Ingredient name: D-2-Nitrophenylalanine CAS number: 169383-17-9 Section 4. First aid measures Skin contact: Immediately wash skin with copious amounts of water for at least 15 minutes while removing contaminated clothing and shoes. If irritation persists, seek medical attention. Eye contact: Immediately wash skin with copious amounts of water for at least 15 minutes. Assure adequate flushing of the eyes by separating the eyelids with fingers. If irritation persists, seek medical attention. Inhalation: Remove to fresh air. In severe cases or if symptoms persist, seek medical attention. Ingestion: Wash out mouth with copious amounts of water for at least 15 minutes. Seek medical attention. Section 5. Fire fighting measures In the event of a fire involving this material, alone or in combination with other materials, use dry powder or carbon dioxide extinguishers. Protective clothing and self-contained breathing apparatus should be worn. Section 6. Accidental release measures Personal precautions: Wear suitable personal protective equipment which performs satisfactorily and meets local/state/national standards. Respiratory precaution: Wear approved mask/respirator Hand precaution: Wear suitable gloves/gauntlets Skin protection: Wear suitable protective clothing Eye protection: Wear suitable eye protection Methods for cleaning up: Mix with sand or similar inert absorbent material, sweep up and keep in a tightly closed container for disposal. See section 12. Environmental precautions: Do not allow material to enter drains or water courses. Section 7. Handling and storage Handling: This product should be handled only by, or under the close supervision of, those properly qualified in the handling and use of potentially hazardous chemicals, who should take into account the fire, health and chemical hazard data given on this sheet. Store in closed vessels. Storage: Section 8. Exposure Controls / Personal protection Engineering Controls: Use only in a chemical fume hood. Personal protective equipment: Wear laboratory clothing, chemical-resistant gloves and safety goggles. General hydiene measures: Wash thoroughly after handling. Wash contaminated clothing before reuse. Section 9. Physical and chemical properties Appearance: Not specified Boiling point: No data No data Melting point: Flash point: No data Density: No data Molecular formula: C9H10N2O4 Molecular weight: 210.2 Section 10. Stability and reactivity Conditions to avoid: Heat, flames and sparks. Materials to avoid: Oxidizing agents. Possible hazardous combustion products: Carbon monoxide, nitrogen oxides. Section 11. Toxicological information No data. Section 12. Ecological information No data. Section 13. Disposal consideration Arrange disposal as special waste, by licensed disposal company, in consultation with local waste disposal authority, in accordance with national and regional regulations. Section 14. Transportation information Non-harzardous for air and ground transportation. Section 15. Regulatory information No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302, or have known CAS numbers that exceed the threshold reporting levels established by SARA Title III, Section 313.
derivatives (rac-1a-s) by enzymatic ammonia elimination and also in the enantiotope selective ammonia addition reactions to cinnamic acid derivatives (2a-s). The enantiotope selectivity of PzaPAL with o-, m-, p-fluoro-, o-, p-chloro- and o-, m-bromo-substituted cinnamic acids proved to be higher than that of PcPAL.
Phenylalanine Ammonia Lyase Catalyzed Synthesis of Amino Acids by an MIO-Cofactor Independent Pathway
作者:Sarah L. Lovelock、Richard C. Lloyd、Nicholas J. Turner
DOI:10.1002/anie.201311061
日期:2014.4.25
MIO‐independent reaction pathway, which proceeds in a non‐stereoselective manner and results in the generation of both L‐ and D‐phenylalanine derivatives, is described. The mechanism of the MIO‐independent pathway is explored through isotopic‐labeling studies and mutagenesis of key active‐site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1cBelimination mechanism
苯丙氨酸解氨酶 (PAL) 属于 4-亚甲基咪唑-5-酮 (MIO) 辅因子依赖性酶家族,其负责在真核生物和原核生物中将L-苯丙氨酸转化为反式肉桂酸。在高氨浓度条件下,这种脱氨反应是可逆的,因此人们对开发 PAL 作为非天然氨基酸的对映选择性合成的生物催化剂有相当大的兴趣。在此发现了一种以前未观察到的竞争性 MIO 非依赖性反应途径,该反应途径以非立体选择性方式进行并导致L-和D的产生描述了-苯丙氨酸衍生物。通过同位素标记研究和关键活性位点残基的诱变探索了 MIO 非依赖性途径的机制。获得的结果与通过逐步 E 1 cB 消除机制发生的氨基酸脱氨基作用一致。
Enantioselective organocatalytic α-sulfamidation of aldehydes using sulfonyl azides
作者:Raymond J. McGorry、Stacey K. Allen、Micha D. Pitzen、Thomas C. Coombs
DOI:10.1016/j.tetlet.2017.10.063
日期:2017.12
Enantioselective organocatalytic α-sulfamidation of unbranched aldehydes is described using MacMillan’s second-generation imidazolidinone catalyst and o-nitrobenzenesulfonyl azide. The reactions are highly stereoselective (89.9–96.3% ee) with yields up to 71%. A strong correlation between aldehyde structure and product yield was found to exist, with 3-arylpropanals providing the best results. Application
Disclosed herein are methods, compositions, probes, assays and kits for identifying a lipid binding protein as a drug binding target. Also disclosed herein are methods, compositions, and probes for mapping a ligand binding site on a lipid binding protein, identification of lipid binding proteins, generating drug-lipid binding protein profiles, high throughput drug screening, and identification of drugs as potential lipid binding protein ligands.
The Bacterial Ammonia Lyase EncP: A Tunable Biocatalyst for the Synthesis of Unnatural Amino Acids
作者:Nicholas J. Weise、Fabio Parmeggiani、Syed T. Ahmed、Nicholas J. Turner
DOI:10.1021/jacs.5b07326
日期:2015.10.14
deracemization cascades (giving (S)- or (R)-α-phenylalanine derivatives, respectively), and also eukaryotic phenylalanine aminomutases (PAMs) for the synthesis of the (R)-β-products. Herein, we present the investigation of another family member, EncP from Streptomyces maritimus, thereby expanding the biocatalytic toolbox and enabling the production of the missing (S)-β-isomer. EncP was found to convert