Most dietary selenium is in the form of selenomethionine ... or selenocysteine, both of which are well absorbed. Other forms of selenium include selenate and selenite, which are not major dietary constituents, but are commonly used in fortified foods and dietary supplements. Two pools of reserve selenium are present in the body. The first is as selenomethionine, which is not known to have a physiological function separate from that of methionine. The second reserve pool is the selenium found in liver glutathione peroxidase. Ingested selenite, selenate, and selenocysteine are all metabolized directly to selenide, the reduced form of selenium. Selenomethionine can also be metabolized to selenide.
To obtain quantitative information on human metabolism of selenium, ... selenium speciation analysis /was performed/ by HPLC/ICPMS on samples of human urine from one volunteer over a 48-hour period after ingestion of selenium (1.0 mg) as sodium selenite, L-selenomethionine, or DL-selenomethionine. The three separate experiments were performed in duplicate. Normal background urine from the volunteer contained total selenium concentrations of 8-30 ug Se/L (n=22) but ... only about 30-70% could be quantified by HPLC/ICPMS. The major species in background urine were two selenosugars, namely methyl-2-acetamido-2-deoxy-1-seleno-beta-D-galactopyranoside (selenosugar 1) and its deacylated analog methyl-2-amino-2-deoxy-1-seleno-beta-D-galactopyranoside (selenosugar 3). Selenium was rapidly excreted after ingestion of the selenium compounds: the peak concentrations (approximately 250-400 ug Se/L, normalized concentrations) were recorded within 5-9 hours, and concentrations had returned to close to background levels within 48 hours, by which time 25-40% of the ingested selenium, depending on the species ingested, had been accounted for in the urine. In all experiments, the major metabolite was selenosugar 1, constituting either approximately 80% of the total selenium excreted over the first 24 hours after ingestion of selenite or L-selenomethionine or approximately 65% after ingestion of DL-selenomethionine. Selenite was not present at significant levels (<1 ug Se/L) in any of the samples; selenomethionine was present in only trace amounts (approximately 1 ug/L, equivalent to less than 0.5% of the total Se) following ingestion of L-selenomethionine, but it constituted about 20% of the excreted selenium (first 24 hours) after ingestion of DL-selenomethionine, presumably because the D form was not efficiently metabolized. Trimethylselenonium ion, a commonly reported urine metabolite, could not be detected (<1 ug/L) in the urine samples after ingestion of selenite or selenomethionine. Cytotoxicity studies on selenosugar 1 and its glucosamine isomer (selenosugar 2, methyl-2-acetamido-2-deoxy-1-seleno-beta-D-glucosopyranoside) were performed with HepG2 cells derived from human hepatocarcinoma, and these showed that both compounds had low toxicity (about 1000-fold less toxic than sodium selenite). The results support earlier studies showing that selenosugar 1 is the major urinary metabolite after increased selenium intake, and they suggest that previously accepted pathways for human metabolism of selenium involving trimethylselenonium ion as the excretionary end product may need to be re-evaluated.
来源:Hazardous Substances Data Bank (HSDB)
代谢
当硒以硒代蛋氨酸或其他自然存在于食物中的有机形式被摄入时,它通过吸收后的分解代谢被释放为亚硒酸盐。
When selenium is consumed as selenomethionine or other organic forms that occur naturally in foods, it is released as selenite by postabsorptive catabolism.
A major source of selenium in the diet is selenomethionine. Once ingested by an animal, it enters the methionine pool and is not distinguished from methionine. Thus, much of the selenium in animal tissues is selenomethionine that is non-specifically incorporated in proteins at methionine positions. When selenomethionine is catabolized, its selenium becomes available to the selenium metabolic.
Male Wistar rats received two intraperitoneally (i.p.) administrations, either methylmercury (MeHg) (1.5mg/kg body weight), selenium methionine (SeMet) alone (1mg/kg body weight) or combined MeHg and SeMet, followed by 3 weeks of rat urine collection and neurobehavioural assays. The effects of different administrations were investigated by the quantification of total mercury in kidney and brain, analysis of urinary porphyrins, determination of hepatic GSH and evaluation of motor activity functions (rearing and ambulation). MeHg exposure resulted in a significant increase of urinary porphyrins during the 3 weeks of rat urine collection, where as it caused a significant decrease in motor activity only at the first day after cessation of rat exposure. Additionally, SeMet co-exposure was able to normalize the porphyrins excretion, and a tendency to restore rat motor activity was observed, on the first day after cessation of exposure. Brain and kidney mercury levels increased significantly in rats exposed to MeHg; however, in co-exposed rats to SeMet no significant changes in Hg levels were found as compared to rats exposed to MeHg alone. Hence, /this/ study shows that urinary porphyrins are sensitive and persistent indicators of MeHg toxicity and demonstrates ... that SeMet reduces its formation. Finally, these results confirm that the mechanism of interaction between SeMet and MeHg cannot be explained by the reduction of Hg levels in target organs and suggestions are made to clarify the interference of SeMet on MeHg toxicity.
The chemopreventive efficacies of selenate, selenite, selenium dioxide, selenomethionine and selenocystine were examined during the promotion phase of carcinogenesis in the 7,12-dimethylbenz(a)anthracene induced mammary tumor model in rats. Each agent was added to the diet of a final concentration of 3 ppm selenium. In general, there was no significant difference in the potency of these five selenium compounds in inhibiting the development of mammary tumors. The interaction of vitamin E (500 ppm) with either selenite or selenomethionine was further characterized in a second carcinogenesis study. Results of this experiment suggested that vitamin E enhanced the protective effect of selenite but not that of selenomethionine. In an attempt to explore the synergistic mechanism of selenium and vitamin E, the effects of these two agents on mitogen induced blastogenesis and natural killer cytotoxic activity were also investigated. No consistent changes in these in vitro immune functions were detected resulting from supranutritional feeding of either selenite or vitamin E or both. ...
The objectives of this study were a) to compare the efficacy of inorganic or organic selenium compounds in protecting against mammary tumorigenesis induced by 7,12-dimethylbenz(a)anthracene (DMBA); in rats and b) to study the interaction of vitamin C with either selenite (inorganic) or seleno-DL-methionine (organic) in chemoprevention. Control Sprague Dawley rats were fed a purified 5% corn oil diet containing 0.1 ppm selenium. Selenite or seleno-DL-methionine was added to the basal diet in concentrations of 2, 3, or 4 ppm starting 1 week after DMBA administration. The inhibitory response in mammary tumorigenesis with selenium supplementation was dose dependent. Both selenium compounds were found to be equally efficacious in prophylaxis, although at the 4 ppm level a slight reduction in growth was observed.
Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand-valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR as necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Selenium and Related Compounds/
... Lambs were orally administered a single dose of selenium as either sodium selenite or selenomethionine and were monitored for 7 days, after which they were euthanized and necropsied. ... Analysis of liver, kidney cortex, heart, blood, and serum revealed linear, dose-dependent increases in selenium concentration. However, tissue selenium concentration in selenomethionine-treated lambs were significantly greater than that in lambs treated with equivalent doses of sodium selenite.
Se-Methylated selenoamino acids, Se-methylselenocysteine (MeSeCys) and selenomethionine (SeMet), are chemically inert storage forms of selenium in selenium-accumulators, and a nutritional and supplemental source. ... Male Wistar rats were depleted of endogenous natural abundance selenium with a single (80)Se-enriched isotope, and then (76)Se-MeSeCys, (77)Se-SeMet and (82)Se-selenite were orally administered simultaneously at 25 ug Se/kg body weight each. Organs and body fluids were obtained at 3, 6, 9 and 12 hr, and 1 and 2 days later, and subjected to speciation analysis. The main characteristics of the metabolism were as follows; MeSeCys was incorporated into selenoprotein P slightly more than or at a comparable level to that of SeMet but less than that of selenite. MeSeCys and SeMet but not selenite was taken up by organs in their intact forms. MeSeCys and SeMet were delivered specifically to the pancreas and present in a form bound to an identical or similar protein. Trimethylselenonium (TMSe) was only produced from MeSeCys, i.e., not from SeMet or selenite, in the kidneys. Both selenosugars A and B of MeSeCys, SeMet and selenite origin were detected in the liver but only selenosugar B in the kidneys...
... Rats were depleted of endogenous natural abundance selenium by feeding a single selenium stable isotope ((82)Se-selenite) and then administered (76)Se-selenite and (77)Se-selenomethionine ((77)Se-SeMet)simultaneously. Biological samples were subjected to quantification and speciation analysis by HPLC-ICPMS. Metabolites of the labeled (76)Se and (77)Se and interaction with endogenous selenium were traced and examined without interference from the corresponding endogenous natural abundance isotopes. Differences in the distribution and metabolism among organs and between the two nutritional selenocompounds were compared under exactly identical biological and analytical conditions: (1) selenite was distributed more efficiently than SeMet in organs and body fluids except the pancreas. (2) SeMet was taken up by organs in its intact form. (3) Selenium of SeMet origin was distributed selectively in the pancreas and mostly bound to a protein together with intact SeMet. (4) Selenosugars A and B but not trimethylselenonium (TMSe) were detected in the liver. (5) Selenosugar B and TMSe were detected in the kidneys.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
... 口服给予的大鼠超过80%的硒代蛋氨酸被吸收。
... More than 80% of orally administered selenomethionine ... is absorbed by rats.