Fragment screening revealed that tyramine binds to the active site of the Alzheimer's disease drug target BACE-1. Hit expansion by selection of compounds from the Roche compound library identified tyramine derivatives with improved binding affinities as monitored by surface plasmon resonance. X-ray structures show that the amine of the tyramine fragment hydrogen-bonds to the catalytic water molecule. Structure-guided ligand design led to the synthesis of further low molecular weight compounds that are starting points for chemical leads. (c) 2008 Elsevier Ltd. All rights reserved.
Fragment screening revealed that tyramine binds to the active site of the Alzheimer's disease drug target BACE-1. Hit expansion by selection of compounds from the Roche compound library identified tyramine derivatives with improved binding affinities as monitored by surface plasmon resonance. X-ray structures show that the amine of the tyramine fragment hydrogen-bonds to the catalytic water molecule. Structure-guided ligand design led to the synthesis of further low molecular weight compounds that are starting points for chemical leads. (c) 2008 Elsevier Ltd. All rights reserved.
Fragment screening revealed that tyramine binds to the active site of the Alzheimer's disease drug target BACE-1. Hit expansion by selection of compounds from the Roche compound library identified tyramine derivatives with improved binding affinities as monitored by surface plasmon resonance. X-ray structures show that the amine of the tyramine fragment hydrogen-bonds to the catalytic water molecule. Structure-guided ligand design led to the synthesis of further low molecular weight compounds that are starting points for chemical leads. (c) 2008 Elsevier Ltd. All rights reserved.