Design of Selective Peptidomimetic Agonists for the Human Orphan Receptor BRS-3
摘要:
New tool substances may help to unravel the physiological role of the human orphan receptor BRS-3 and its possible use as a drug target for the treatment of obesity and cancer. In continuation of our work on BRS-3, the solid- and solution-phase synthesis of a library of low molecular weight peptidomimetic agonists based on the recently developed short peptide agonist 4 is described. Functional potencies of the compounds were determined measuring calcium mobilization in a fluorometric imaging plate reader (FLIPR) assay. Focusing on the N-terminus, the D-Phe-Gln moiety of 4 was modified in a combinatorial. SAR-oriented medicinal chemistry approach. With the incorporation of N-arylated glycine and alanine building blocks azaglycine, piperazine, or piperidine and the synthesis of semicarbazides and semicarbazones, a number of highly potent and selective compounds with a reduced number of peptide bonds were obtained, which also should have enhanced metabolic stability.
Design of Selective Peptidomimetic Agonists for the Human Orphan Receptor BRS-3
摘要:
New tool substances may help to unravel the physiological role of the human orphan receptor BRS-3 and its possible use as a drug target for the treatment of obesity and cancer. In continuation of our work on BRS-3, the solid- and solution-phase synthesis of a library of low molecular weight peptidomimetic agonists based on the recently developed short peptide agonist 4 is described. Functional potencies of the compounds were determined measuring calcium mobilization in a fluorometric imaging plate reader (FLIPR) assay. Focusing on the N-terminus, the D-Phe-Gln moiety of 4 was modified in a combinatorial. SAR-oriented medicinal chemistry approach. With the incorporation of N-arylated glycine and alanine building blocks azaglycine, piperazine, or piperidine and the synthesis of semicarbazides and semicarbazones, a number of highly potent and selective compounds with a reduced number of peptide bonds were obtained, which also should have enhanced metabolic stability.
Cyclic Peptoids as Topological Templates: Synthesis via Central to Conformational Chirality Induction
作者:Assunta D’Amato、Giovanni Pierri、Chiara Costabile、Giorgio Della Sala、Consiglia Tedesco、Irene Izzo、Francesco De Riccardis
DOI:10.1021/acs.orglett.7b03786
日期:2018.2.2
the synthesis of diastereopure cyclic peptoids containing an N-benzyl alanine residue. Molecular modeling, NMR spectroscopy, single-crystal X-ray diffraction studies, and HPLC with chiral stationary phase demonstrated easy formation of free and sodium/benzylammonium complexed cyclic oligomers through strategic incorporation of a single stereogenic center in the oligomeric backbone. The synthesis of
New tool substances may help to unravel the physiological role of the human orphan receptor BRS-3 and its possible use as a drug target for the treatment of obesity and cancer. In continuation of our work on BRS-3, the solid- and solution-phase synthesis of a library of low molecular weight peptidomimetic agonists based on the recently developed short peptide agonist 4 is described. Functional potencies of the compounds were determined measuring calcium mobilization in a fluorometric imaging plate reader (FLIPR) assay. Focusing on the N-terminus, the D-Phe-Gln moiety of 4 was modified in a combinatorial. SAR-oriented medicinal chemistry approach. With the incorporation of N-arylated glycine and alanine building blocks azaglycine, piperazine, or piperidine and the synthesis of semicarbazides and semicarbazones, a number of highly potent and selective compounds with a reduced number of peptide bonds were obtained, which also should have enhanced metabolic stability.