Flexible Conductive Polymer Patterns from Vapor Polymerizable and Photo-Cross-Linkable EDOT
摘要:
We explored direct photopatterning of a vapor polymerizable and photo-cross-linkable 3,4-ethylenedioxythiopene (EDOT) to make it suitable for use in electronics applications. We prepared a conductive polymer, PEDOT-MA, using vapor phase polymerization (VPP) of the (2,3-dihydrothieno-[3,4-b][1,4]dioxin-2-yl)methyl methacrylate (EDOT-MA) and photochemically induced a conductivity change of the PEDOT-MA film to ensure a flexible conductive pattern. The room-temperature conductivity (sigma(RT)) of the PEDOT-MA Film on PET was 30-120 S/cm, depending oil the oxidant layer thickness and was increased similar to 30% when the PEDOT-MA film was doped with aqueous solution of p-toluenesulfonic acid. Photoreaction of PEDOT-MA decreased the sigma(RT) to 1.7 x 10(-3) S/cm because of the photo-cross-linking of the side chain. The transparency of the conductive films was tuned using the vapor polymerization time to control the film thickness. The photo-cross-linking reaction of the side chain generated micropatterns having line widths of 50-0.9 mu m, in which the light-exposed areas appeared as bleached and less conductive. A diffractive, flexible, conductive film with 41% of diffraction efficiency was obtained from the line-patterned film having a spacing of 0.9 mu m.
Methods of selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays
申请人:Industry-Academic Cooperation Foundation, Yonsei University
公开号:US10385303B2
公开(公告)日:2019-08-20
The present invention relates to a method for selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays. More particularly, conducting polymers or metal oxides having exothermic characteristics upon irradiation of near infrared light is used as a cell culture scaffold, thus selectively attaching/detaching cells without an enzyme treatment. The scaffold has an effect of promoting proliferation or differentiation of stem cells, and therefore, can be used as a stem cell culture scaffold. The scaffold enables cell attachment/detachment without temporal or spatial restrictions, thus enabling cell patternization.
METHOD FOR SELECTIVE CELL ATTACHMENT/DETACHMENT, CELL PATTERNIZATION AND CELL HARVESTING BY MEANS OF NEAR INFRARED RAYS
申请人:Industry-Academic Cooperation Foundation, Yonsei University
公开号:US20150044770A1
公开(公告)日:2015-02-12
The present invention relates to a method for selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays. More particularly, conducting polymers or metal oxides having exothermic characteristics upon irradiation of near infrared light is used as a cell culture scaffold, thus selectively attaching/detaching cells without an enzyme treatment. The scaffold has an effect of promoting proliferation or differentiation of stem cells, and therefore, can be used as a stem cell culture scaffold. The scaffold enables cell attachment/detachment without temporal or spatial restrictions, thus enabling cell patternization.
METHODS OF SELECTIVE CELL ATTACHMENT/DETACHMENT, CELL PATTERNIZATION AND CELL HARVESTING BY MEANS OF NEAR INFRARED RAYS
申请人:Industry-Academic Cooperation Foundation, Yonsei University
公开号:US20170073627A1
公开(公告)日:2017-03-16
The present invention relates to a method for selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays. More particularly, conducting polymers or metal oxides having exothermic characteristics upon irradiation of near infrared light is used as a cell culture scaffold, thus selectively attaching/detaching cells without an enzyme treatment. The scaffold has an effect of promoting proliferation or differentiation of stem cells, and therefore, can be used as a stem cell culture scaffold. The scaffold enables cell attachment/detachment without temporal or spatial restrictions, thus enabling cell patternization.
Flexible Conductive Polymer Patterns from Vapor Polymerizable and Photo-Cross-Linkable EDOT
作者:Jeonghun Kim、Jungmok You、Eunkyoung Kim
DOI:10.1021/ma9025306
日期:2010.3.9
We explored direct photopatterning of a vapor polymerizable and photo-cross-linkable 3,4-ethylenedioxythiopene (EDOT) to make it suitable for use in electronics applications. We prepared a conductive polymer, PEDOT-MA, using vapor phase polymerization (VPP) of the (2,3-dihydrothieno-[3,4-b][1,4]dioxin-2-yl)methyl methacrylate (EDOT-MA) and photochemically induced a conductivity change of the PEDOT-MA film to ensure a flexible conductive pattern. The room-temperature conductivity (sigma(RT)) of the PEDOT-MA Film on PET was 30-120 S/cm, depending oil the oxidant layer thickness and was increased similar to 30% when the PEDOT-MA film was doped with aqueous solution of p-toluenesulfonic acid. Photoreaction of PEDOT-MA decreased the sigma(RT) to 1.7 x 10(-3) S/cm because of the photo-cross-linking of the side chain. The transparency of the conductive films was tuned using the vapor polymerization time to control the film thickness. The photo-cross-linking reaction of the side chain generated micropatterns having line widths of 50-0.9 mu m, in which the light-exposed areas appeared as bleached and less conductive. A diffractive, flexible, conductive film with 41% of diffraction efficiency was obtained from the line-patterned film having a spacing of 0.9 mu m.