Hypoxia-Sensitive Fluorescent Probes for in Vivo Real-Time Fluorescence Imaging of Acute Ischemia
摘要:
Based on the findings that the azo functional group has excellent properties as the hypoxia-sensor moiety, we developed hypoxia-sensitive near-infrared fluorescent probes in which a large fluorescence increase is triggered by the cleavage of an azo bond. The probes were used for fluorescence imaging of hypoxic cells and real-time monitoring of ischemia in the liver and kidney of live mice.
Hypoxia-Sensitive Fluorescent Probes for in Vivo Real-Time Fluorescence Imaging of Acute Ischemia
摘要:
Based on the findings that the azo functional group has excellent properties as the hypoxia-sensor moiety, we developed hypoxia-sensitive near-infrared fluorescent probes in which a large fluorescence increase is triggered by the cleavage of an azo bond. The probes were used for fluorescence imaging of hypoxic cells and real-time monitoring of ischemia in the liver and kidney of live mice.
Dyes and photoluminescent compounds based on polymethine dyes that contain at least one alkyl-phosphonate or substituted alkyl-phosphonate group, including the synthetic precursors, methods of synthesis, and applications thereof. Certain embodiments include heterocyclic ring systems and polymethine linkage are selected such that the resulting polymethine dye is a cyanine dye, a merocyanine dye, or a styryl dye.
Dyes and photoluminescent compounds based on polymethine dyes that contain at least one alkyl-phosphonate or substituted alkyl-phosphonate group, including the synthetic precursors, methods of synthesis, and applications thereof. Certain embodiments include heterocyclic ring systems and polymethine linkage are selected such that the resulting polymethine dye is a cyanine dye, a merocyanine dye, or a styryl dye.
Synthesis and Photostability of Unimolecular Submersible Nanomachines: Toward Single-Molecule Tracking in Solution
作者:Víctor García-López、Jonathan Jeffet、Shunsuke Kuwahara、Angel A. Martí、Yuval Ebenstein、James M. Tour
DOI:10.1021/acs.orglett.6b00506
日期:2016.5.20
The synthesis and photophysical properties of a series of photostable unimolecular submersible nanomachines (USNs) are reported as a first step toward the analysis of their trajectories in solution. The USNs have a light-driven rotatory motor for propulsion in solution and photostable cy5-COT fluorophores for their tracking. These cy5-COT fluorophores are found to provide an almost 2-fold increase