Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor
摘要:
A series of novel, fluorescent ligands designed to bind with high affinity and specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized and tested on human liver cells. The compounds bear three non-reducing, beta-linked Gal or GalNAc moieties linked to flexible spacers for an optimal spatial interaction with the binding site of the ASGP-R. The final constructs were selectively endocytosed by HepG2 cells derived from parenchymal liver cells-the major human liver cell type-in a process that was visualized with the aid of fluorescence microscopy. Furthermore, the internalization was analyzed with flow cytometry, which showed the process to be receptor-mediated and selective. The compounds described in this work could serve as valuable tools for studying hepatic endocytosis, and are suited as carriers for site-specific drug delivery to the liver. (C) 2008 Elsevier Ltd. All rights reserved.
Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor
摘要:
A series of novel, fluorescent ligands designed to bind with high affinity and specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized and tested on human liver cells. The compounds bear three non-reducing, beta-linked Gal or GalNAc moieties linked to flexible spacers for an optimal spatial interaction with the binding site of the ASGP-R. The final constructs were selectively endocytosed by HepG2 cells derived from parenchymal liver cells-the major human liver cell type-in a process that was visualized with the aid of fluorescence microscopy. Furthermore, the internalization was analyzed with flow cytometry, which showed the process to be receptor-mediated and selective. The compounds described in this work could serve as valuable tools for studying hepatic endocytosis, and are suited as carriers for site-specific drug delivery to the liver. (C) 2008 Elsevier Ltd. All rights reserved.
Adaptable Synthesis of <i>C</i>-Glycosidic Multivalent Carbohydrates and Succinamide-Linked Derivatization
作者:Gavin J. Miller、John M. Gardiner
DOI:10.1021/ol102310x
日期:2010.11.19
A modular approach to the synthesis of trivalent C-glycosidic carbohydrates is described. The approach is illustrated employing carboxylate-terminated C-glycosidic D-mannose, D-glucose, and D-galactose derivatives with different length C1-linked spacer units and also core units with different length linker units attached. The central core scaffold is additionally functionalized via a succinamide-based, conjugatable linker unit, exemplified in an extended multivalent derivative [31] and a pyrene-bearing fluorsecent-labeled tris-C-mannosyl conjugate [33].