摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

UDP-beta-L-rhamnose(2-)

中文名称
——
中文别名
——
英文名称
UDP-beta-L-rhamnose(2-)
英文别名
[[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl] [(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl] phosphate
UDP-beta-L-rhamnose(2-)化学式
CAS
——
化学式
C15H22N2O16P2-2
mdl
——
分子量
548.29
InChiKey
DRDCJEIZVLVWNC-SLBWPEPYSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -6
  • 重原子数:
    35
  • 可旋转键数:
    8
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.73
  • 拓扑面积:
    277
  • 氢给体数:
    6
  • 氢受体数:
    16

反应信息

  • 作为反应物:
    描述:
    soyasaponin III(1-) 、 UDP-beta-L-rhamnose(2-) 生成 氢(+1)阳离子 、 soyasaponin I(1-) 、 UDP
    参考文献:
    名称:
    Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I inGlycine max
    摘要:
    Triterpene saponins are a diverse group of compounds with a structure consisting of a triterpene aglycone and sugars. Identification of the sugar‐transferase involved in triterpene saponin biosynthesis is difficult due to the structural complexity of triterpene saponin. Two glycosyltransferases from Glycine max, designated as GmSGT2 and GmSGT3, were identified and characterized. In vitro analysis revealed that GmSGT2 transfers a galactosyl group from UDP‐galactose to soyasapogenol B monoglucuronide, and that GmSGT3 transfers a rhamnosyl group from UDP‐rhamnose to soyasaponin III. These results suggest that soyasaponin I is biosynthesized from soyasapogenol B by successive sugar transfer reactions.
    DOI:
    10.1016/j.febslet.2010.03.037
  • 作为产物:
    描述:
    氢(+1)阳离子NADPH(4-) 、 UDP-4-dehydro-beta-L-rhamnose 生成 NADP+UDP-beta-L-rhamnose(2-)
    参考文献:
    名称:
    Functional Analysis of Arabidopsis thaliana RHM2/MUM4, a Multidomain Protein Involved in UDP-D-glucose to UDP-L-rhamnose Conversion
    摘要:
    UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on rhamnogalacturonan-l-directed development in Arabidopsis thaliana. RHM2/MUM4-related genes, RHM1 and RHM3, can be found in the A. thaliana genome. Here we present direct evidence that all three RHM proteins have UDP-D-glucose 4,6-dehydratase, UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase, and UDP-4-keto-Lrhamnose 4-keto-reductase activities in the cytoplasm when expressed in the yeast Saccharomyces cerevisiae. Functional domain analysis revealed that the N-terminal region of RHM2 (RHM2-N; amino acids 1-370) has the first activity and the C-terminal region of RHM2 (RHM2-C; amino acids 371-667) has the two following activities. This suggests that RHM2 converts UDP-D-glucose to UDP-L-rhamnose via an UDP-4-keto-6-deoxy-D-glucose intermediate. Site-directed mutagenesis of RHM2 revealed that mucilage defects in MUM4-1 and MUM4-2 mutant seeds of A. thaliana are caused by abolishment of RHM2 enzymatic activity in the mutant strains and furthermore, that the GXXGXX(G/A) and YXXXK motifs are important for enzymatic activity. Moreover, a kinetic analysis of purified His(6)-tagged RHM2-N protein revealed 5.9-fold higher affinity of RHM2 for UDP-D-glucose than for dTDP-D-glucose, the preferred substrate for dTDP-D-glucose 4,6-dehydratase from bacteria. RHM2-N activity is strongly inhibited by UDP-L-rhamnose, UDP-D-xylose, and UDP but not by other sugar nucleotides, suggesting that RHM2 maintains cytoplasmic levels of UDP-D-glucose and UDP-L-rhamnose via feedback inhibition by UDP-L-rhamnose and UDP-D-xylose.
    DOI:
    10.1074/jbc.m610196200
点击查看最新优质反应信息

文献信息

  • Biochemical characterization of rhamnosyltransferase involved in biosynthesis of pectic rhamnogalacturonan I in plant cell wall
    作者:Yohei Uehara、Shunsuke Tamura、Yusuke Maki、Kenta Yagyu、Tadashi Mizoguchi、Hitoshi Tamiaki、Tomoya Imai、Tadashi Ishii、Takao Ohashi、Kazuhito Fujiyama、Takeshi Ishimizu
    DOI:10.1016/j.bbrc.2017.03.012
    日期:2017.4
    The pectin in plant cell walls consists of three domains: homogalacturonan, rhamnogalacturonan (RG)-I, and RG-II. It is predicted that around 50 different glycosyltransferases are required for their biosynthesis. Among these, the activities of only a few glycosyltransferases have been detected because pectic oligosaccharides are not readily available for use as substrates. In this study, fluorogenic
    植物细胞壁中的果胶由三个结构域组成:高半乳糖醛酸聚糖,鼠李糖半乳糖醛酸聚糖(RG)-I和RG-II。据预测,它们的生物合成需要大约50种不同的糖基转移酶。其中,由于果胶寡糖不易用作底物,因此仅检测到少数糖基转移酶的活性。在本研究中,制备了具有3-14个聚合度(DP)的荧光吡啶基化RG-1骨干低聚糖(PA-RGs)。使用这些寡糖,从小豆表皮胚轴的微粒体中检测到涉及RG-1主链二糖基重复单元(-4GalUAα1-2Rhaα1-)生物合成的RG-1鼠李糖基转移酶(RRT)的活性。发现RRT首选更长的受体底物,DP> 7的PA-RG。而且它不需要任何金属离子来发挥作用。RRT位于高尔基体和内质网。RRT的活性与上胚轴生长相吻合,表明RG-1生物合成参与了植物的生长。
  • Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases
    作者:Hyeon Jeong Kim、Bong-Gyu Kim、Joong-Hoon Ahn
    DOI:10.1007/s00253-013-4844-7
    日期:2013.6
    as sugar acceptors. Quercetin rhamnosides contain antiviral activity. Two quercetin diglycosides, quercetin 3-O-glucoside-7-O-rhamnoside and quercetin 3,7-O-bisrhamnoside, were synthesized using Escherichia coli expressing two UGTs. For the synthesis of quercetin 3-O-glucoside-7-O-rhamnoside, AtUGT78D2, which transfers glucose from UDP-glucose to the 3-hydroxyl group of quercetin, and AtUGT89C1, which
    由于类黄酮中存在多个羟基,因此不容易实现类黄酮的区域选择性糖基化。通过使用尿苷二磷酸依赖性糖基转移酶(UGT)可以克服这一障碍,该酶使用核苷酸糖作为糖供体,并使用包括类黄酮在内的多种化合物作为糖受体。槲皮素鼠李糖苷具有抗病毒活性。使用表达两个UGT的大肠杆菌合成了两种槲皮素二糖苷,槲皮素3-O-葡糖苷-7-O-鼠李糖苷和槲皮素3,7-O-双鼠李糖苷。对于槲皮素3-O-葡萄糖苷-7-O-鼠李糖苷的合成,AtUGT78D2将葡萄糖从UDP-葡萄糖转移到槲皮素的3-羟基,而AtUGT89C1将鼠李糖从UDP-鼠李糖转移到7-羟基。一组槲皮素3-O-葡萄糖苷,被转化到大肠杆菌中。使用这种方法,合成了67 mg / L槲皮素3-O-葡萄糖苷-7-O-鼠李糖苷。对于槲皮素3,7-O-双鼠李糖苷的合成,使用将鼠李糖转移至槲皮素3-羟基的AtUGT78D1和AtUGT89C1。共表达拟南芥的RHM2基因以
  • Discovery of UDP-Glycosyltransferases and BAHD-Acyltransferases Involved in the Biosynthesis of the Antidiabetic Plant Metabolite Montbretin A
    作者:Sandra Irmisch、Seohyun Jo、Christopher R. Roach、Sharon Jancsik、Macaire Man Saint Yuen、Lufiani L. Madilao、Mark O’Neil-Johnson、Russel Williams、Stephen G. Withers、Joerg Bohlmann
    DOI:10.1105/tpc.18.00406
    日期:2018.8
    active molecules for drug discovery. The acylated flavonol glycoside montbretin A (MbA) and its precursor myricetin 3-O-(6'-O-caffeoyl)-glucosyl rhamnoside (mini-MbA) are potent inhibitors of human pancreatic α-amylase and are being developed as drug candidates to treat type-2 diabetes. MbA occurs in corms of the ornamental plant montbretia (Crocosmia x crocosmiiflora), but a system for large-scale MbA production
    植物专门的代谢是药物发现的生物活性分子的丰富资源。酰化黄酮醇糖苷 montbretin A (MbA) 及其前体杨梅素 3-O-(6'-O-咖啡酰基)-葡萄糖基鼠李糖苷 (mini-MbA) 是人胰腺 α-淀粉酶的有效抑制剂,正在开发作为候选药物治疗2型糖尿病。 MbA 存在于观赏植物 montbretia (Crocosmia x crocosmiiflora) 的球茎中,但目前尚无大规模生产 MbA 的系统。来自黄酮醇杨梅素的 MbA 生物合成和 MbA 积累发生在球茎发育的早期阶段。我们建立了杨梅素 3-O-鼠李糖苷 (MR)、杨梅素 3-O-葡萄糖基鼠李糖苷 (MRG) 和 mini-MbA 作为 MbA 生物合成的前三种中间体。对比年轻和年老球茎的转录组揭示了UDP糖依赖性糖基转移酶(UGT)和BAHD-酰基转移酶(BAHD-AT)的差异表达。 UGT77B2和UGT709G2分
  • UGT73C6 and UGT78D1, Glycosyltransferases Involved in Flavonol Glycoside Biosynthesis in Arabidopsis thaliana
    作者:Patrik Jones、Burkhard Messner、Jun-Ichiro Nakajima、Anton R. Schäffner、Kazuki Saito
    DOI:10.1074/jbc.m303523200
    日期:2003.11
    Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDPglucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-O-rhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.
  • Bar-Peled M.; Lewinsohn E.; Fluhr R., J Biol Chem, 1991, 0021-9258, 20953-9
    作者:Bar-Peled M.、Lewinsohn E.、Fluhr R.、Gressel J.
    DOI:——
    日期:——
查看更多

同类化合物

阿拉伯糖基胸腺嘧啶 5'-三磷酸酯 阿拉伯呋喃糖基尿苷三磷酸酯 脱氧尿苷 5'-三磷酸酯 胸苷酸二钠 胸苷酸 胸苷二磷酸酯-L-鼠李糖 胸苷-5'-三磷酸 胸苷 3',5'-二磷酸酯 胸腺嘧啶脱氧核苷酸5-单磷酸对硝基苯酯钠盐 胞苷单磷酸酯-N-羟基乙酰基神经氨酸 胞苷5-(三氢二磷酸酯),化合物与2-氨基乙醇(1:1),单钠盐 胞苷5'-四磷酸酯 胞苷5'-单磷酸甲酯 胞苷-5’-二磷酸 胞苷-5’-三磷酸二钠盐 胞苷-5'-单磷酸-N-乙酰神经氨酸 胞苷 5’-单磷酸 胞苷 3',5'-二磷酸酯 胞苷 2ˊ,3ˊ-环一磷酸钠盐 胞磷托定 胞嘧啶-5'-二磷酸二钠 胞二磷胆碱 聚尿苷酸钾盐 聚(5-甲硫基尿苷单磷酸) 羟基甲基脱氧尿苷三磷酸酯 磷酸)二氢2'-脱氧-5-(甲氧基甲基)尿苷5'-( 碘脱氧尿苷酸 甲氨蝶呤5-氨基烯丙基-2'-脱氧尿苷5'-单磷酸酯 生物素-36-脱氧三磷酸胞苷 生物素-36-脱氧三磷酸尿苷 溴脱氧尿苷三磷酸酯 氨基嘧啶酮-4-二磷酸二胺-2-C-甲基-D-赤藓糖醇 尿苷酰基(2'->5')尿苷铵盐 尿苷二磷酸酯葡萄糖胺 尿苷二磷酸酯甘露糖 尿苷二磷酸酯半乳糖胺 尿苷二磷酸酯 N-乙酰基甘露糖胺 尿苷二磷酸酯 2-脱氧葡萄糖 尿苷二磷酰-N-乙酰基葡萄糖胺烯醇丙酮酸 尿苷5-单磷酸 尿苷5'-四磷酸酯 尿苷5'-二磷酸钠盐水合物 尿苷5'-二磷酰-alpha-D-葡萄糖-13C6二铵盐 尿苷5'-(三氢二磷酸酯)二钾盐 尿苷5'-(O-2-乙酰氨基-2-脱氧吡喃甘露糖酸-(1-4)-2-乙酰氨基-2-脱氧吡喃葡萄糖基二磷酸酯) 尿苷5'-(2-乙酰氨基-2-脱氧-ALPHA-D-葡糖基焦磷酸酯) 尿苷5'-(2-乙酰氨基-2,4-二脱氧-4-氟吡喃半乳糖基)二磷酸酯 尿苷3'-二磷酸酯5'-二磷酸酯 尿苷-半乳糖醛酸 尿苷-N-乙酰基葡萄糖胺糖醛酸