The activity of leukotriene A4 (LTA4) synthase in crude human leukocyte homogenates was found to have a similar requirement for Ca2+ and ATP as had been noted previously for 5-lipoxygenase activity. Purification of the 5-lipoxygenase using ammonium sulfate fractionation, AcA 44 gel-filtration chromatography, and HPLC on anion-exchange and hydroxyapatite columns demonstrated that LTA4 synthase activity copurified with the 5-lipoxygenase with similar recoveries and increases in specific activity. Furthermore, the two enzymatic activities coeluted exactly on three different HPLC systems. Maximal activity of purified LTA4 synthase required the addition of three nondialyzable stimulatory factors, two of which were cytosolic and one of which was membrane-bound. These findings were identical for 5-lipoxygenase activity. When incubated with arachidonic acid, the purified 5-lipoxygenase converted approximately equal to 15% of its endogenously generated 5-hydroperoxyicosatetraenoic acid (5-HPETE) to LTA4. LTA4 production was more efficient when the enzyme utilized 5-HPETE generated from arachidonic acid than when 5-HPETE was exogenously supplied as substrate. These findings suggest that a single protein from human leukocytes possesses 5-lipoxygenase and LTA4 synthase activities and that the synthesis of LTA4 from 5-HPETE is controlled by the same complex multicomponent system that regulates the 5-lipoxygenase reaction.
(15S)-Hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid (15-HETE) suppresses in ionophore-A23187-stimulated human polymorphonuclear leucocytes (PMN) the conversion of exogenous arachidonic acid into leukotriene B4 (LTB4) and (5S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). However, contrary to earlier suggestions, 15-HETE is not a genuine 5-lipoxygenase inhibitor under these conditions, but rather suppresses the 5-lipoxygenation of arachidonic acid by switching-over of substrate utilization, as judged from a sizeable formation of labelled (5S,15S)-dihydroxy-(6E,8Z,11Z,13E)-eicosatetraenoic acid (5,15-diHETE) from 15-[1-14C]HETE. Identical results were obtained with human recombinant 5-lipoxygenase. In PMN the formation of 5,15-diHETE is strongly stimulated by either hydroperoxypolyenoic fatty acids or arachidonic acid, suggesting a crucial role of the hydroperoxide tone of the cell. A comparison of a selection of hydroxypolyenoic fatty acids with respect to their capability of suppressing 5-lipoxygenation of arachidonic acid revealed that 15-monohydroxyeicosanoids throughout exhibit the highest inhibitory potencies, whereas the other HETEs, 5,15-diHETE as well as octadecanoids, are modest or poor inhibitors. The R and S enantiomers of 15-HETE do not differ from each other, excluding a receptor-like binding of the 15-hydroxy group.