[reaction: see text] In the presence of the optically active ketoiminatocobalt(II) complexes, the enantioselective borohydride reduction of benzophenones was successfully completed. The fluorine atom on the ortho position of the benzophenone and aryl ketones proved effective for obtaining high enantioselectivities. The combined use of modified lithium borohydride afforded the corresponding benzhydrols
directing group (bromo group) showcased the potential application of this substrate‐controlled bioreduction reaction. The combined use of substrateengineering and protein engineering, was demonstrated to be a useful strategy in efficiently improving stereoselectivity or switching stereopreference of enzymatic processes.
A sequence of f-phamidol-based tetradentate phosphine ligands have been developed and successfully used in iridium-catalyzed enantioselectivehydrogenation of benzophenones to deliver chiral benzhydrols in almost quantitative yields and with excellent enantioselectivities (up to >99% yield and up to >99% ee). Moreover, the catalytic system shows a broad substrate scope and functional group tolerance