B(C 6 F 5)3催化的环状酰亚胺的氢化硅烷化提供了吡咯烷的有效合成方法。在5mol%B(C 6 F 5)3的存在下,各种芳族,脂族和多环酰亚胺被PhSiH 3平滑还原,从而以高收率生成相应的吡咯烷。通过1 H NMR光谱监测的反应曲线揭示了环酰亚胺的还原过程以及氢化硅烷的不同结构对氢化硅烷化的影响。
hydroxide‐catalyzed hydrosilylation exhibits excellent activity and chemoselectivity for the reduction of cyclic imides under mild reaction conditions. The chemoselectivity of the reduction system may be readily tuned by changing the identity and stoichiometry of the hydrosilanes: a polymethylhydrosiloxane (PMHS)/potassium hydroxide reduction system resulted in the reduction of various cyclic imides to
Cyclicimides were selectively reduced to the corresponding ω‐hydroxylactams in high yields with (EtO)3SiH (triethoxysilane) or PMHS (polymethylhydrosiloxane) under catalysis of zinc diacetate dehydrate [Zn(OAc)2⋅2 H2O] (10%) and tetramethylethylenediamine (TMEDA) (10%). This catalytic protocol showed good functional group tolerance as well as excellent regioselectivity for unsymmetrical imides bearing
B(C6F5)3-catalyzed hydrosilylation of cyclicimides afforded an efficient synthetic method of pyrrolidines. In the presence of 5 mol% B(C6F5)3, various aromatic, aliphatic and polycyclic imides were smoothly reduced by PhSiH3 to generate the corresponding pyrrolidines in high yields. The reaction profiles monitored by 1H NMR spectroscopy disclosed the reduction process of cyclicimides and the effect of difference
B(C 6 F 5)3催化的环状酰亚胺的氢化硅烷化提供了吡咯烷的有效合成方法。在5mol%B(C 6 F 5)3的存在下,各种芳族,脂族和多环酰亚胺被PhSiH 3平滑还原,从而以高收率生成相应的吡咯烷。通过1 H NMR光谱监测的反应曲线揭示了环酰亚胺的还原过程以及氢化硅烷的不同结构对氢化硅烷化的影响。