摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

膦酸,[[2-(1,3-二氢-1,3-二羰基-2H-异吲哚-2-基)苯基]甲基]-,二乙基酯 | 140150-99-8

中文名称
膦酸,[[2-(1,3-二氢-1,3-二羰基-2H-异吲哚-2-基)苯基]甲基]-,二乙基酯
中文别名
——
英文名称
diethyl <<2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)phenyl>methyl>phosphonate
英文别名
2-[2-(Diethoxyphosphorylmethyl)phenyl]isoindole-1,3-dione
膦酸,[[2-(1,3-二氢-1,3-二羰基-2H-异吲哚-2-基)苯基]甲基]-,二乙基酯化学式
CAS
140150-99-8
化学式
C19H20NO5P
mdl
——
分子量
373.345
InChiKey
WKMJYHVQGRUZGG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.2
  • 重原子数:
    26
  • 可旋转键数:
    7
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.26
  • 拓扑面积:
    72.9
  • 氢给体数:
    0
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists
    摘要:
    A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([H-3]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [Ca-45(2+)] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2-mu-M) was retained for analogues (31 and 32, Table 1; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper. 1
    DOI:
    10.1021/jm00086a005
  • 作为产物:
    参考文献:
    名称:
    Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists
    摘要:
    A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([H-3]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [Ca-45(2+)] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2-mu-M) was retained for analogues (31 and 32, Table 1; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper. 1
    DOI:
    10.1021/jm00086a005
点击查看最新优质反应信息

文献信息

  • Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists
    作者:Christopher F. Bigge、Graham Johnson、Daniel F. Ortwine、James T. Drummond、Daniel M. Retz、Laura J. Brahce、Linda L. Coughenour、Frank W. Marcoux、Albert W. Probert
    DOI:10.1021/jm00086a005
    日期:1992.4
    A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([H-3]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [Ca-45(2+)] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2-mu-M) was retained for analogues (31 and 32, Table 1; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper. 1
查看更多

同类化合物

(1Z,3Z)-1,3-双[[((4S)-4,5-二氢-4-苯基-2-恶唑基]亚甲基]-2,3-二氢-5,6-二甲基-1H-异吲哚 鲁拉西酮杂质33 鲁拉西酮杂质07 马吲哚 颜料黄110 顺式-六氢异吲哚盐酸盐 顺式-2-[(1,3-二氢-1,3-二氧代-2H-异吲哚-2-基)甲基]-N-乙基-1-苯基环丙烷甲酰胺 顺-N-(4-氯丁烯基)邻苯二甲酰亚胺 降莰烷-2,3-二甲酰亚胺 降冰片烯-2,3-二羧基亚胺基对硝基苄基碳酸酯 降冰片烯-2,3-二羧基亚胺基叔丁基碳酸酯 阿胍诺定 阿普斯特降解杂质 阿普斯特杂质29 阿普斯特杂质27 阿普斯特杂质26 阿普斯特杂质 阿普斯特 防焦剂MTP 铝酞菁 铁(II)2,9,16,23-四氨基酞菁 酞酰亚胺-15N钾盐 酞菁锡 酞菁二氯化硅 酞菁 单氯化镓(III) 盐 酞美普林 邻苯二甲酸亚胺 邻苯二甲酰基氨氯地平 邻苯二甲酰亚胺,N-((吗啉)甲基) 邻苯二甲酰亚胺阴离子 邻苯二甲酰亚胺钾盐 邻苯二甲酰亚胺钠盐 邻苯二甲酰亚胺观盐 邻苯二亚胺甲基磷酸二乙酯 那伏莫德 过氧化氢,2,5-二氢-5-苯基-3H-咪唑并[2,1-a]异吲哚-5-基 达格吡酮 诺非卡尼 螺[环丙烷-1,1'-异二氢吲哚]-3'-酮 螺[异吲哚啉-1,4'-哌啶]-3-酮盐酸盐 葡聚糖凝胶G-25 苹果酸钠 苯酚,4-溴-3-[(1-甲基肼基)甲基]-,1-苯磺酸酯 苯胺,4-乙基-N-羟基-N-亚硝基- 苯基甲基2-脱氧-2-(1,3-二氢-1,3-二氧代-2H-异吲哚-2-基)-3-O-(苯基甲基)-4,6-O-[(R)-苯基亚甲基]-BETA-D-吡喃葡萄糖苷 苯二酰亚氨乙醛二乙基乙缩醛 苯二甲酰亚氨基乙醛 苯二(甲)酰亚氨基甲基磷酸酯 膦酸,[[2-(1,3-二氢-1,3-二羰基-2H-异吲哚-2-基)苯基]甲基]-,二乙基酯 胺菊酯