摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[Cp*CF3RhCl2]2 | 157997-89-2

中文名称
——
中文别名
——
英文名称
[Cp*CF3RhCl2]2
英文别名
rhodium(3+);1,2,3,4-tetramethyl-5-(trifluoromethyl)cyclopenta-1,3-diene;tetrachloride
[Cp*CF<sub>3</sub>RhCl<sub>2</sub>]<sub>2</sub>化学式
CAS
157997-89-2
化学式
C20H24Cl4F6Rh2
mdl
——
分子量
726.024
InChiKey
GDMXTDPVGMASLW-UHFFFAOYSA-J
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.67
  • 重原子数:
    32
  • 可旋转键数:
    0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    12

反应信息

  • 作为反应物:
    描述:
    乙烯[Cp*CF3RhCl2]2 在 Na2CO3 作用下, 以 乙醇 为溶剂, 以54%的产率得到
    参考文献:
    名称:
    Design and Study of Rh(III) Catalysts for the Selective Tail-to-Tail Dimerization of Methyl Acrylate
    摘要:
    The development of an efficient, highly selective Rh(III) catalyst system for the tail-to-tail dimerization of methyl acrylate (MA) to dimethyl hexenedioates, precursors to adipic acid, is described. The catalytic cycle is entered by protonation of Cp*Rh(C2H4)(2)l(Cp* = C(5)Me(5)) to yield Cp*Rh(C2H4) (CH2CH2-mu-H)(+) (7) followed by reaction with methylacrylate. The catalyst resting state has been generated by low-temperature protonation of Cp*Rh(CH2CHCO2-CH3)(2)l (15) and identified as Cp*Rd(CH(2)CH(2)COOMe)(eta(2)-CH(2)CHCO(2)Me)(+) (8) by H-1 and C-13 NMR spectroscopy. Investigation of iridium analogs has led to the isolation and X-ray structural characterization of Cp*Ir(CH(2)CH(2)COOMe)(eta(2)-CH(2)CHCO(2)Me)(+) (23a), in which the orientation of the acrylate ligands is that required for tail-to-tail coupling. At -23 degrees C, complex 8 undergoes beta-migratory insertion to give Cp*RhCH(CH(2)COOMe)(CH2-CH(2)COOMe)(+) (10). Complex 10 was independently synthesized by treatment of complex 7 with trans-MeO(2)CCH=CHCH(2)CH(2)CO(2)Me and was characterized by X-ray crystallography. The free energy of activation for the migration reaction is 18.7 kcal/mol and matches that based on the catalytic turnover (TO) frequency (6.6 TO/min at 25 degrees C, Delta G* = 19 kcal/mol).This observation confirms 8 as the resting state and the C-C coupling reaction as the turnover-limiting step. The catalyst deactivates by formal loss of Hz from complex 10 to produce Cp*Rh(eta(3)-CH3OCOCH2CHCHCHCO2CH3)(+) (9). The structure of complex 9 was verified by an X-ray crystallographic study. Exposure of 9 to an atmosphere of H-2 in the presence of MA regenerates the resting state 8, and dimerization proceeds. Second generation catalysts with increased activity and lifetimes have been developed by replacing the C(5)Me(5) ligand by methylated indenyl ligands. Using the catalytic system derived from (1,2,3-trimethylindenyl)Rh(C2H4>(2) (11), conversion of 54 000 equiv of methyl acrylate to dimethyl hexenedioates could be achieved after 68 h at 55 OC under N-2. Details of the mechanism have been elucidated and resemble closely those of the Cp* system. Similar intermediates to 8 and 10 have been characterized by H-1 and C-13 NMR spectroscopy. In contrast, treatment with methyl acrylate of the more electrophilic systems derived from CpRh(C2H4)(2) (25) (Cp = C5H5) and Cp*Rh(C2H4)(2) (30) (Cp* = C-5(CH3)(4)CF3) results in slow dimerization. Low-temperature protonation of CpRh(CH2CHCO2CH3)(2) (27) with H(Et(2)O)(2)BAr'(4) yields a mixture of rhodium species which upon warming to 23 degrees C converge to the bis-chelate complex CpRhCH(CH(2)COOMe)(CH(2)CH(2)COOMe)(+) (28). Exposure of complex 28 to MA generates the unusual bridged species CpRh(CH2CHCOOCH3)H(CH2CHCOOCH3)(+) (29), which serves as the resting state during dimerization. Treatment of complex 30 with H(Et(2)O)(2)BAr'(4) yields Cp*Rh(C2H4)(CH2CH2-mu-H)(+) (31), which upon reaction with MA clearly produces Cp*RhCH(CH(2)COOMe)(CH(2)CH(2)COOMe)(+) (33), and dimerization proceeds. Finally, attempts to catalyze the dimerization of other functionalized olefins including methyl vinyl ketone, methyl crotonate, 2-vinylpyridine, and 1-vinyl-2-pyrrolidinone are presented.
    DOI:
    10.1021/ja00097a011
  • 作为产物:
    描述:
    1,2,3,4-四甲基-5-(三氟甲基)环戊-1,3-二烯氯化铑(三水)甲醇 为溶剂, 以63%的产率得到[Cp*CF3RhCl2]2
    参考文献:
    名称:
    Gusev, Oleg V.; Ievlev, Mikhail A.; Lyssenko, Konstantin A., Inorganica Chimica Acta, 1998, vol. 280, # 1-2, p. 249 - 256
    摘要:
    DOI:
  • 作为试剂:
    描述:
    2-甲氧基肉桂酸 、 在 dipotassium peroxodisulfate 、 [Cp*CF3RhCl2]2silver(I) 4-methylbenzenesulfonate 作用下, 以74%的产率得到5-(2-methoxyphenyl)-2,3-dimethylpyridine
    参考文献:
    名称:
    Rh(III)-催化的丙烯酸与不饱和肟酯的脱羧偶联:羧酸用作无痕活化剂
    摘要:
    α,β-不饱和羧酸与α,β-不饱和O-新戊酰基肟进行Rh(III)催化的脱羧偶联,以良好的收率提供取代的吡啶。通过脱羧去除的羧酸作为无痕活化基团,产生具有非常高区域选择性的 5-取代吡啶。机理研究排除了吡啶甲酸中间体,可分离的铑配合物进一步阐明了反应机理。
    DOI:
    10.1021/ja412444d
点击查看最新优质反应信息

文献信息

  • Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C–H Activation Reactions: An Experimental and Computational Study
    作者:Tiffany Piou、Fedor Romanov-Michailidis、Maria Romanova-Michaelides、Kelvin E. Jackson、Natthawat Semakul、Trevor D. Taggart、Brian S. Newell、Christopher D. Rithner、Robert S. Paton、Tomislav Rovis
    DOI:10.1021/jacs.6b11670
    日期:2017.1.25
    CpXRh(III)-catalyzed C-H functionalization reactions are a proven method for the efficient assembly of small molecules. However, rationalization of the effects of cyclopentadienyl (CpX) ligand structure on reaction rate and selectivity has been viewed as a black box, and a truly systematic study is lacking. Consequently, predicting the outcomes of these reactions is challenging because subtle variations
    CpXRh(III) 催化的 CH 官能化反应是有效组装小分子的一种行之有效的方法。然而,环戊二烯基(CpX)配体结构对反应速率和选择性影响的合理化一直被视为黑匣子,缺乏真正系统的研究。因此,预测这些反应的结果具有挑战性,因为配体结构的细微变化会导致反应行为发生显着变化。尽管如此,预测工具对社区具有相当大的价值,因为它会大大加速反应的发展。设计一个数据集,其中 CpXRh(III) 催化剂的空间和电子特性系统地变化使我们能够应用多元线性回归算法来建立这些基于催化剂的描述符与模型反应的区域选择性、非对映选择性和速率之间的相关性. 这反过来又导致了描述催化剂性能的定量预测模型的发展。我们新描述的 CpX 配体的锥角和 Sterimol 参数在回归模型中用作高度相关的空间描述符。通过训练和验证集的合理设计,确定了关键的非对映选择性异常值。计算揭示了这些异常值所显示的出色立体感应的起源。结果与在选择性决定步骤的过渡态中发生的部分
  • Rh(III)-Catalyzed C–H Activation-Initiated Directed Cyclopropanation of Allylic Alcohols
    作者:Erik J. T. Phipps、Tomislav Rovis
    DOI:10.1021/jacs.9b02156
    日期:2019.5.1
    annulation onto allylic alcohols initiated by alkenyl C-H activation of N-enoxyphthalimides to furnish substituted cyclopropyl-ketones. Notably, the traceless oxyphthalimide handle serves three functions: directing C-H activation, oxidation of Rh(III), and, collectively with the allylic alcohol, in directing cyclopropanation to control diastereoselectivity. Allylic alcohols are shown to be highly reactive
    我们已经开发了一种 Rh(III) 催化的非对映选择性 [2+1] 环化到烯丙醇上,由 N-基邻二甲酰亚胺基 CH 活化引发,以提供取代的环丙基。值得注意的是,无痕二甲酰亚胺手柄具有三个功能:引导 CH 活化、Rh(III) 的化,以及与烯丙醇共同引导环丙烷化以控制非对映选择性。烯丙醇被证明是高度反应性的烃偶联伙伴,导致定向的非对映选择性环丙烷化反应,提供其他途径无法获得的产物。
  • Scope and Mechanism of the Intermolecular Addition of Aromatic Aldehydes to Olefins Catalyzed by Rh(I) Olefin Complexes
    作者:Amy H. Roy、Christian P. Lenges、Maurice Brookhart
    DOI:10.1021/ja066509x
    日期:2007.2.1
    electron-deficient metal center of CpRh(VTMS)(2). Reaction of Cp*/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) with PMe(3) yields acyl complexes Cp*/Rh[C(O)CH(2)CH(2)SiMe(3)](PMe(3))(Ar); measured first-order rates of reductive elimination of ketone from these Rh(III) complexes established that the Cp ligand accelerates this process relative to the Cp* ligand.
    (I) 双烯烃配合物 Cp*Rh(VTMS)(2) 和 CpRh(VTMS)(2) (Cp* = C(5)Me(5), Cp = C(5)Me(4)CF( 3), VTMS = 乙烯基甲基硅烷) 被发现催化芳香醛与烃的加成形成。使用缺电子程度更高的催化剂 CpRh(VTMS)(2) 可以加快反应速度,提高 α-烃线性产物的选择性,以及更广泛的反应范围。乙烯基甲基硅烷酰化的 NMR 研究表明,起始的 Rh(I) 双烯烃配合物和相应的 Cp*/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) 配合物是催化剂静止的状态,在更替之前在它们之间建立平衡。机理研究表明,由于还原消除率的增加,CpRh(VTMS)(2) 显示出更快的周转频率(相对于 Cp*Rh(VTMS)(2)),周转限制步骤,来自更缺电子的 CpRh(VTMS)(2) 属中心。Cp*/Rh(CH(2)C
  • Expedient Access to 2,3-Dihydropyridines from Unsaturated Oximes by Rh(III)-Catalyzed C–H Activation
    作者:Fedor Romanov-Michailidis、Kassandra F. Sedillo、Jamie M. Neely、Tomislav Rovis
    DOI:10.1021/jacs.5b04946
    日期:2015.7.22
    alpha,beta-Unsaturated - oxime pivalates are proposed to undergo reversible C(sp(2))-H insertion with cationic Rh (III) complexes to furnish five-membered metallacycles. In the presence of 1,1-disubstituted olefins, these species participate in irreversible migratory insertion to give, after reductive elimination, 2,3-dihydropyridine products in good yields. Catalytic hydrogenation can then be used to. convert these molecules into piperidines, which are important structural components of numerous pharmaceuticals.
  • Isomerization of Aldehydes Catalyzed by Rhodium(I) Olefin Complexes
    作者:Christian P. Lenges、Maurice Brookhart
    DOI:10.1002/(sici)1521-3773(19991203)38:23<3533::aid-anie3533>3.0.co;2-e
    日期:——
查看更多