摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-[2-(benzylmethylamino)ethyl]indan-1-one | 502769-54-2

中文名称
——
中文别名
——
英文名称
2-[2-(benzylmethylamino)ethyl]indan-1-one
英文别名
2-[2-[Benzyl(methyl)amino]ethyl]-2,3-dihydroinden-1-one
2-[2-(benzylmethylamino)ethyl]indan-1-one化学式
CAS
502769-54-2
化学式
C19H21NO
mdl
——
分子量
279.382
InChiKey
VTZUIUFUHXVCBA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.6
  • 重原子数:
    21
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.32
  • 拓扑面积:
    20.3
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    2-[2-(benzylmethylamino)ethyl]indan-1-one 在 10percent Pd/C 正丁基锂甲酸氢气 作用下, 以 乙醚乙醇 为溶剂, 反应 15.0h, 生成 外消旋-N-去甲基二甲茚定
    参考文献:
    名称:
    Structure−Activity Relationships of Dimethindene Derivatives as New M2-Selective Muscarinic Receptor Antagonists
    摘要:
    A series of 2,3-disubstituted indenes, which are analogues of the widely used histamine H, receptor antagonist dimethindene, have been synthesized and studied as muscarinic and histamine receptor antagonists. The affinities of these compounds for the five human muscarinic receptor subtypes (M-1-M-5) and for human histamine H, receptors were determined in radioligand binding studies using membranes from transfected Chinese hamster ovary (CHO) cells and [H-3]N-methylscopolamine ([H-3]NMS). The results demonstrate that the diisopropyl analogue 19 has a similar high affinity as (S)-dimethindene at M-2 receptors ((S)-dimethindene: pK(i) = 7.52; (-)-19: pK(i) = 7.37) with an improved selectivity pattern ((S)-dimethindene: M-2/M-1 = 6-fold, M-2/M-3 = 5-fold, M-2/M-4 = 10-fold, M-2/M-5 = 25-fold; (-)-19: M-2/M-1 = 36-fold, M-2/M-3 = 96-fold, M-2/M-4 = 42-fold, M-2/M-5 = 275-fold). In addition, compound (-)-19 showed 35-fold lower affinity at histamine H-1 receptors (pK(i) = 5.61) than (S)-dimethindene (pK(i) = 7.16). Another interesting compound is the fluoroethyl derivative 20 (pK(i)/M-2 = 7.49), which also exhibits a higher M-2 selectivity (M-2/M-1 = 19-fold; M-2/M-3 = 22-fold; M-2/M-4 = 13-fold; M-2/ M-5 = 62-fold) than (S)-dimethindene. Unfortunately, compound 20 also shows a high affinity for histamine H-1 receptors (pK(i) = 8.14). The compound with the highest affinity for M-2 receptors (pK(i) = 7.91), the dimethylaminomethylene analogue 31, displayed only a small preference for M-2 receptors. In conclusion, compound (-)-19 might be useful to test the hypothesis that blockade of muscarinic M-2 receptors in the brain is a viable mechanism by which to produce improved cognition. This second-generation dimethindene analogue might also be the starting point for the development Of M-2-selective muscarinic antagonists useful for quantifying M-2 receptors in the central nervous system with positron emission tomography imaging.
    DOI:
    10.1021/jm020895l
  • 作为产物:
    描述:
    N-(2-氯乙基)-n-甲基苄胺盐酸盐sodium hydroxide 、 PPA 、 sodium hydride 作用下, 以 乙醇甲苯 为溶剂, 反应 11.33h, 生成 2-[2-(benzylmethylamino)ethyl]indan-1-one
    参考文献:
    名称:
    Structure−Activity Relationships of Dimethindene Derivatives as New M2-Selective Muscarinic Receptor Antagonists
    摘要:
    A series of 2,3-disubstituted indenes, which are analogues of the widely used histamine H, receptor antagonist dimethindene, have been synthesized and studied as muscarinic and histamine receptor antagonists. The affinities of these compounds for the five human muscarinic receptor subtypes (M-1-M-5) and for human histamine H, receptors were determined in radioligand binding studies using membranes from transfected Chinese hamster ovary (CHO) cells and [H-3]N-methylscopolamine ([H-3]NMS). The results demonstrate that the diisopropyl analogue 19 has a similar high affinity as (S)-dimethindene at M-2 receptors ((S)-dimethindene: pK(i) = 7.52; (-)-19: pK(i) = 7.37) with an improved selectivity pattern ((S)-dimethindene: M-2/M-1 = 6-fold, M-2/M-3 = 5-fold, M-2/M-4 = 10-fold, M-2/M-5 = 25-fold; (-)-19: M-2/M-1 = 36-fold, M-2/M-3 = 96-fold, M-2/M-4 = 42-fold, M-2/M-5 = 275-fold). In addition, compound (-)-19 showed 35-fold lower affinity at histamine H-1 receptors (pK(i) = 5.61) than (S)-dimethindene (pK(i) = 7.16). Another interesting compound is the fluoroethyl derivative 20 (pK(i)/M-2 = 7.49), which also exhibits a higher M-2 selectivity (M-2/M-1 = 19-fold; M-2/M-3 = 22-fold; M-2/M-4 = 13-fold; M-2/ M-5 = 62-fold) than (S)-dimethindene. Unfortunately, compound 20 also shows a high affinity for histamine H-1 receptors (pK(i) = 8.14). The compound with the highest affinity for M-2 receptors (pK(i) = 7.91), the dimethylaminomethylene analogue 31, displayed only a small preference for M-2 receptors. In conclusion, compound (-)-19 might be useful to test the hypothesis that blockade of muscarinic M-2 receptors in the brain is a viable mechanism by which to produce improved cognition. This second-generation dimethindene analogue might also be the starting point for the development Of M-2-selective muscarinic antagonists useful for quantifying M-2 receptors in the central nervous system with positron emission tomography imaging.
    DOI:
    10.1021/jm020895l
点击查看最新优质反应信息

文献信息

  • Structure−Activity Relationships of Dimethindene Derivatives as New M<sub>2</sub>-Selective Muscarinic Receptor Antagonists
    作者:Thomas M. Böhme、Christine Keim、Kai Kreutzmann、Matthias Linder、Theo Dingermann、Gerd Dannhardt、Ernst Mutschler、Günter Lambrecht
    DOI:10.1021/jm020895l
    日期:2003.2.1
    A series of 2,3-disubstituted indenes, which are analogues of the widely used histamine H, receptor antagonist dimethindene, have been synthesized and studied as muscarinic and histamine receptor antagonists. The affinities of these compounds for the five human muscarinic receptor subtypes (M-1-M-5) and for human histamine H, receptors were determined in radioligand binding studies using membranes from transfected Chinese hamster ovary (CHO) cells and [H-3]N-methylscopolamine ([H-3]NMS). The results demonstrate that the diisopropyl analogue 19 has a similar high affinity as (S)-dimethindene at M-2 receptors ((S)-dimethindene: pK(i) = 7.52; (-)-19: pK(i) = 7.37) with an improved selectivity pattern ((S)-dimethindene: M-2/M-1 = 6-fold, M-2/M-3 = 5-fold, M-2/M-4 = 10-fold, M-2/M-5 = 25-fold; (-)-19: M-2/M-1 = 36-fold, M-2/M-3 = 96-fold, M-2/M-4 = 42-fold, M-2/M-5 = 275-fold). In addition, compound (-)-19 showed 35-fold lower affinity at histamine H-1 receptors (pK(i) = 5.61) than (S)-dimethindene (pK(i) = 7.16). Another interesting compound is the fluoroethyl derivative 20 (pK(i)/M-2 = 7.49), which also exhibits a higher M-2 selectivity (M-2/M-1 = 19-fold; M-2/M-3 = 22-fold; M-2/M-4 = 13-fold; M-2/ M-5 = 62-fold) than (S)-dimethindene. Unfortunately, compound 20 also shows a high affinity for histamine H-1 receptors (pK(i) = 8.14). The compound with the highest affinity for M-2 receptors (pK(i) = 7.91), the dimethylaminomethylene analogue 31, displayed only a small preference for M-2 receptors. In conclusion, compound (-)-19 might be useful to test the hypothesis that blockade of muscarinic M-2 receptors in the brain is a viable mechanism by which to produce improved cognition. This second-generation dimethindene analogue might also be the starting point for the development Of M-2-selective muscarinic antagonists useful for quantifying M-2 receptors in the central nervous system with positron emission tomography imaging.
查看更多

同类化合物

(S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (R)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (4S,5R)-3,3a,8,8a-四氢茚并[1,2-d]-1,2,3-氧杂噻唑-2,2-二氧化物-3-羧酸叔丁酯 (3aS,8aR)-2-(吡啶-2-基)-8,8a-二氢-3aH-茚并[1,2-d]恶唑 (3aS,3''aS,8aR,8''aR)-2,2''-环戊二烯双[3a,8a-二氢-8H-茚并[1,2-d]恶唑] (1α,1'R,4β)-4-甲氧基-5''-甲基-6'-[5-(1-丙炔基-1)-3-吡啶基]双螺[环己烷-1,2'-[2H]indene 齐洛那平 鼠完 麝香 风铃醇 颜料黄138 雷美替胺杂质14 雷美替胺杂质 雷美替胺杂质 雷美替胺杂质 雷美替胺杂质 雷美替胺杂质 雷美替胺 雷沙吉兰杂质8 雷沙吉兰杂质5 雷沙吉兰杂质4 雷沙吉兰杂质3 雷沙吉兰杂质15 雷沙吉兰杂质12 雷沙吉兰杂质 雷沙吉兰 阿替美唑盐酸盐 铵2-(1,3-二氧代-2,3-二氢-1H-茚-2-基)-8-甲基-6-喹啉磺酸酯 金粉蕨辛 金粉蕨亭 重氮正癸烷 酸性黄3[CI47005] 酒石酸雷沙吉兰 还原茚三酮(二水) 还原茚三酮 过氧化,2,3-二氢-1H-茚-1-基1,1-二甲基乙基 表蕨素L 螺双茚满 螺[茚-2,4-哌啶]-1(3H)-酮盐酸盐 螺[茚-2,4'-哌啶]-1(3H)-酮 螺[茚-1,4-哌啶]-3(2H)-酮盐酸盐 螺[环丙烷-1,2'-茚满]-1'-酮 螺[二氢化茚-1,4'-哌啶] 螺[1H-茚-1,4-哌啶]-3(2H)-酮 螺[1H-茚-1,4-哌啶]-1,3-二羧酸, 2,3-二氢- 1,1-二甲基乙酯 螺[1,2-二氢茚-3,1'-环丙烷] 藏花茚 蕨素 Z 蕨素 D 蕨素 C