Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of [1,2,4]triazolo[4,3-b]pyridazines that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays and show an unprecedented selectivity towards the G2019S mutant. A structural rational for the observed selectivity is proposed. (C) 2013 Elsevier Ltd. All rights reserved.
作者:Maurizio Franzini、Xiaocong M. Ye、Marc Adler、Danielle L. Aubele、Albert W. Garofalo、Shawn Gauby、Erich Goldbach、Gary D. Probst、Kevin P. Quinn、Pam Santiago、Hing L. Sham、Danny Tam、Anh Truong、Zhao Ren
DOI:10.1016/j.bmcl.2013.02.043
日期:2013.4
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of [1,2,4]triazolo[4,3-b]pyridazines that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays and show an unprecedented selectivity towards the G2019S mutant. A structural rational for the observed selectivity is proposed. (C) 2013 Elsevier Ltd. All rights reserved.
Synthesis and bioevaluation of 6-chloropyridazin-3-yl hydrazones and 6-chloro-3-substituted-[1,2,4]triazolo[4,3-b]pyridazines as cytotoxic agents
An efficient synthesis of a series of 6-chloro-3-substituted-[1,2,4]triazolo[4,3-b]pyridazines is described via intramolecular oxidative cyclization of various 6-chloropyridazin-3-yl hydrazones with iodobenzene diacetate. The structures of the newly synthesized compounds were assigned on the basis of elemental analysis, IR, NMR (1H and 13C) and mass spectral data. All the thirty three compounds 3a-q