AbstractThe continuous innovation of captivating new organic semiconducting materials remains pivotal in the development of high‐performance organic electronic devices. Herein, a molecular engineering by combining sila‐annulation with the vertical extension of rylene diimides (RDIs) toward high‐mobility organic semiconductors is presented. The unilateral and bilateral sila‐annulated quaterrylene diimides (Si‐QDI and 2Si‐QDI) are designed and synthesized. In particular, the symmetrical bilateral 2Si‐QDI exhibits a compact, 1D slipped π–π stacking arrangement through the synergistic combination of a sizable π‐conjugated core and intercalating alkyl chains. Combining the appreciable elevated HOMO levels and reduced energy gaps, the single‐crystalline organic field‐effect transistors (SC‐OFETs) based on 2Si‐QDI demonstrate exceptional ambipolar transport characteristics with an impressive hole mobility of 3.0 cm2 V−1 s−1 and an electron mobility of 0.03 cm2 V−1 s−1, representing the best ampibolar SC‐OFETs based on RDIs. Detailed theoretical calculations rationalize that the larger transfer integral along the π–π stacking direction is responsible for the achievement of the superior charge transport. This study showcases the remarkable potential of sila‐annulation in optimizing carrier transport performances of polycyclic aromatic hydrocarbons (PAHs).
 
                                    摘要 在开发高性能有机电子器件的过程中,不断创新令人着迷的新型有机半导体材料仍然至关重要。本文介绍了一种将
硅烷化与二
亚胺(RDIs)垂直延伸相结合的分子工程学,以实现高迁移率有机半导体。本文设计并合成了单侧和双侧
硅烷基四亚甲基二
酰亚胺(Si-QDI 和 2Si-QDI)。其中,对称的双侧 2Si-QDI 通过相当大的π共轭核心和插层烷基链的协同组合,呈现出紧凑的 1D 滑动π-π堆叠排列。基于 2Si-QDI 的单晶有机场效应晶体管(SC-OFET)结合了明显升高的 HOMO 
水平和减小的能隙,表现出卓越的安培极传输特性,空穴迁移率达到 3.0 cm2 V-1 s-1,电子迁移率为 0.03 cm2 V-1 s-1,是基于 RDI 的最佳安培极 SC-OFET。详细的理论计算表明,沿 π-π 堆叠方向的较大转移积分是实现优异电荷传输的原因。这项研究展示了
硅烷化在优化多环
芳烃(PAHs)载流子传输性能方面的巨大潜力。