Searching for Dual Inhibitors of the MDM2-p53 and MDMX-p53 Protein-Protein Interaction by a Scaffold-Hopping Approach
摘要:
Two libraries of substituted benzimidazoles were designed using a ‘scaffold‐hopping’ approach based on reported MDM2‐p53 inhibitors. Substituents were chosen following library enumeration and docking into an MDM2 X‐ray structure. Benzimidazole libraries were prepared using an efficient solution‐phase approach and screened for inhibition of the MDM2‐p53 and MDMX‐p53 protein–protein interactions. Key examples showed inhibitory activity against both targets.
Searching for Dual Inhibitors of the MDM2-p53 and MDMX-p53 Protein-Protein Interaction by a Scaffold-Hopping Approach
摘要:
Two libraries of substituted benzimidazoles were designed using a ‘scaffold‐hopping’ approach based on reported MDM2‐p53 inhibitors. Substituents were chosen following library enumeration and docking into an MDM2 X‐ray structure. Benzimidazole libraries were prepared using an efficient solution‐phase approach and screened for inhibition of the MDM2‐p53 and MDMX‐p53 protein–protein interactions. Key examples showed inhibitory activity against both targets.
Methods for the synthesis of phenylacetaldehydes (oxidation, one-carbon chain extension) were compared by using the synthesis of 4-methoxyphenylacetaldehyde as a model example. Oxidations of 4-methoxyphenylethanol with activated DMSO (Swern oxidation) or manganese dioxide gave unsatisfactory results; whereas oxidation with 2-iodoxybenzoic acid (IBX) produced 4-methoxyphenylacetaldehyde in reasonable
Palladium-catalyzed oxidative difunctionalization of enol ethers with 1,3-dicarbonyl compounds to construct trisubstituted furans in one step under mild conditions is described. The reaction is thought to proceed through a C-C bond formation along with a C-O bond closing the ring structure. Oxygen is the sole oxidant regenerating the Pd(II) catalyst.