Synthesis, Isolation, Characterization, and Reactivity of High-Energy Stereogenic-at-Ru Carbenes: Stereochemical Inversion through Olefin Metathesis and Other Pathways
摘要:
The synthesis, isolation, purification (routine silica gel chromatography), and spectroscopic characterization of high-energy endo stereogenic-at-Ru complex isomers, generated by ring-opening/cross-metathesis (ROCM) reaction of the corresponding exo carbenes, are disclosed. We provide experimental evidence showing that an endo isomer can undergo thermal or Bronsted acid-catalyzed polytopal rearrangement, causing conversion to the energetically favored exo carbene.
Synthesis, Isolation, Characterization, and Reactivity of High-Energy Stereogenic-at-Ru Carbenes: Stereochemical Inversion through Olefin Metathesis and Other Pathways
摘要:
The synthesis, isolation, purification (routine silica gel chromatography), and spectroscopic characterization of high-energy endo stereogenic-at-Ru complex isomers, generated by ring-opening/cross-metathesis (ROCM) reaction of the corresponding exo carbenes, are disclosed. We provide experimental evidence showing that an endo isomer can undergo thermal or Bronsted acid-catalyzed polytopal rearrangement, causing conversion to the energetically favored exo carbene.
Synthesis, Isolation, Characterization, and Reactivity of High-Energy Stereogenic-at-Ru Carbenes: Stereochemical Inversion through Olefin Metathesis and Other Pathways
作者:R. Kashif M. Khan、Adil R. Zhugralin、Sebastian Torker、Robert V. O’Brien、Pamela J. Lombardi、Amir H. Hoveyda
DOI:10.1021/ja3056722
日期:2012.8.1
The synthesis, isolation, purification (routine silica gel chromatography), and spectroscopic characterization of high-energy endo stereogenic-at-Ru complex isomers, generated by ring-opening/cross-metathesis (ROCM) reaction of the corresponding exo carbenes, are disclosed. We provide experimental evidence showing that an endo isomer can undergo thermal or Bronsted acid-catalyzed polytopal rearrangement, causing conversion to the energetically favored exo carbene.