摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

9H-1,8-diazafluoren-9-one hydrazone | 90299-43-7

中文名称
——
中文别名
——
英文名称
9H-1,8-diazafluoren-9-one hydrazone
英文别名
1.8-Diaza-fluorenon-hydrazon;cyclopenta[1,2-b;4,3-b']dipyridin-9-one hydrazone;6,10-diazatricyclo[7.4.0.02,7]trideca-1(9),2(7),3,5,10,12-hexaen-8-ylidenehydrazine
9H-1,8-diazafluoren-9-one hydrazone化学式
CAS
90299-43-7
化学式
C11H8N4
mdl
MFCD03413725
分子量
196.211
InChiKey
AEHCOPIXGGSXOF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.16
  • 重原子数:
    15.0
  • 可旋转键数:
    0.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    64.16
  • 氢给体数:
    1.0
  • 氢受体数:
    4.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    9H-1,8-diazafluoren-9-one hydrazone一水合肼 作用下, 反应 18.0h, 以74%的产率得到1,8-二氮杂芴
    参考文献:
    名称:
    Mlochowski, Jacek; Szulc, Zdzislaw, Polish Journal of Chemistry, 1983, vol. 57, # 1/3, p. 33 - 39
    摘要:
    DOI:
  • 作为产物:
    描述:
    1,8-二氮-9-芴酮 以75%的产率得到
    参考文献:
    名称:
    MLOCHOWSKI, J.;SZULC, Z., POL. J. CHEM., 1983, 57, N 1-3, 33-39
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Overcrowded 1,8-diazafluorenylidene-chalcoxanthenes. Introducing nitrogens at the fjord regions of bistricyclic aromatic enes
    作者:Amalia Levy、Shmuel Cohen、Israel Agranat
    DOI:10.1039/b303041e
    日期:——
    The effects of introducing nitrogen atoms in the fjord regions and chalcogen bridges on the conformations of overcrowded bistricyclic aromatic enes (1, X ≠ Y) (BAEs) were studied. 9-(9′H-1′,8′-Diazafluoren-9′-ylidene)-9H-thioxanthene (12), 9-(9H-1′, 8′-diazafluoren-9′-ylidene)-9H-selenoxanthene (13), 9-(9′H-1′,8′-diazafluoren-9′-ylidene)-9H-telluroxanthene (14), 9-(9′H-1′,8′-fluoren-9-ylidene)-9H-xanthene (15) and 9-(9′H-1′,8′-fluoren-9′-ylidene)-9H-fluorene (16) were synthesized by two-fold extrusion coupling reactions of 1,8-diaza-9H-fluoren-9-one (19)/chalcoxanthenthiones (24–27) (or /9H-fluorene-9-thione (30)). The 1′,8′-diazafluoren-9-ylidene-chalcoxanthenes (11) were compared with the respective fluoren-9-ylidene-chalcoxanthenes (10). The structures of 12–16 were established by 1H, 13C, 77Se, and 125Te NMR spectroscopies. The crystal and molecular structures of 12–14 were determined by X-ray analysis. The yellow molecules of 12–14 adopted mono-folded conformations with folding dihedrals in the chalocoxanthylidene moieties of 62.7° (12), 62.4° (13) and 59.9° (14). The folding dihedrals in the respective 1′,8′-diazafluorenylidene moieties were very small, ca. 2°, compared with 10.2/8.0° in (9′H-fluoren-9′-ylidene)-9H-selenoxanthene (7). A 5° pure twist of C9C9′ in 14 is noted. The degrees of overcrowding in the fjord regions of 12–14 (intramolecular non-bonding distances) were relatively small. The degrees of pyramidalization of C9 and C9′ were 17.0/3.0° (12), 17.4/2.4° (13) and 2.2/2.2° (14). These high values in 12 and 13 stem from the resistance of the 1,8-diazafluorenylidene moiety to fold and from the limits in the degrees of folding of the thioxanthylidene and selenoxanthylidene moieties (due to shorter S10–C4a/S10–C10a and Se10–C4a/Se10–C10a bonds, as compared with the respective Te–C bonds in 14). The molecules of 15 and 16 adopt twisted conformations, a conclusion drawn from the 1H NMR chemical shifts of the fjord regions protons (H1 and H8) at 8.70 (15) and 9.00 ppm (16) and from their colors and UV/VIS spectra: 15 is purple (λmax = 521 nm) and 16 is orange–red. A comparison of the NMR spectra of 11 and 10 (Δδ = δ(11) – δ(10)) showed substantial downfield shifts of 0.56–0.62 ppm of the fjord regions protons of twisted 15 and 16: Δδ (C9) were negative (upfield): −4.0 (12), −3.7 (13), −3.4 (14), −7.1 (15), −5.0 ppm (16), while Δδ (C9′) were positive (downfield) = +6.8 (12), +6.5 (13), +5.8 (14), +11.7 (15), +7.7 ppm (16). In 15, Δδ (C9) – Δδ (C9′) = +18.8 ppm, attributed to a push–pull character and significant contributions of zwitterionic structures in the twisted conformation. The 77Se and 125Te NMR signals of 13 and 14 were shifted upfield relative to the respective fluorenylidene-chalcoxanthene derivatives: Δδ77Se = 17.2 ppm and Δδ125Te = 22.0 ppm. The presence of the nitrogen atoms (N1′ and N8′) in 13 and 14 causes shielding of the selenium and tellurium nuclei.
    在峡湾区域引入氮原子以及硫族桥对过度拥挤的双环芳香烯(1,X ≠ Y)(BAEs)构象的影响进行了研究。通过两步挤出耦合反应合成了9-(9′H-1′,8′-二氮荧光素-9′-亚烯基)-9H-硫茚(12)、9-(9H-1′,8′-二氮荧光素-9′-亚烯基)-9H-硒茚(13)、9-(9′H-1′,8′-二氮荧光素-9′-亚烯基)-9H-碲茚(14)、9-(9′H-1′,8′-荧光素-9-亚烯基)-9H-茚(15)和9-(9′H-1′,8′-荧光素-9′-亚烯基)-9H-荧光烯(16),反应物为1,8-二氮-9H-荧光素-9-酮(19)/二硫茚(24–27)或/9H-荧光烯-9-硫(30)。将1′,8′-二氮荧光素-9-亚烯基-二硫茚(11)与相应的荧光素-9-亚烯基-二硫茚(10)进行了比较。通过1H、13C、77Se和125Te NMR光谱确定了12–16的结构。12–14的晶体和分子结构通过X射线分析确定。黄色分子12–14呈现单重折叠构象,在二硫茚基团中的折叠二面角分别为62.7°(12)、62.4°(13)和59.9°(14)。相应的1′,8′-二氮荧光素基团的折叠二面角相对较小,约为2°,而在(9′H-荧光素-9′-亚烯基)-9H-硒茚(7)中为10.2/8.0°。在14中注意到C9C9′有5°的纯扭曲。12–14的峡湾区域拥挤程度(分子内非键合距离)相对较小。C9和C9′的金字塔化程度分别为17.0/3.0°(12)、17.4/2.4°(13)和2.2/2.2°(14)。12和13中的较高数值源于1,8-二氮荧光素基团折叠的抵抗性以及二硫茚基团和硒茚基团的折叠程度的限制(由于S10–C4a/S10–C10a和Se10–C4a/Se10–C10a键较短,与14中的相应Te–C键相比)。15和16的分子呈现扭曲构象,这一结论根据峡湾区域质子的1H NMR化学位移(H1和H8)为8.70(15)和9.00 ppm(16)以及它们的颜色和UV/VIS光谱得出:15呈紫色(λmax = 521 nm),16为橙红色。对11和10的NMR光谱进行比较(Δδ = δ(11) - δ(10))显示,扭曲的15和16的峡湾区域质子明显向下移位0.56–0.62 ppm:Δδ (C9) 为负(向上移):−4.0 (12)、−3.7(13)、−3.4(14)、−7.1(15)、−5.0 ppm(16),而Δδ (C9′) 为正(向下移)= +6.8(12)、+6.5(13)、+5.8(14)、+11.7(15)、+7.7 ppm(16)。在15中,Δδ (C9) - Δδ (C9′) = +18.8 ppm,归因于推拉特征和扭曲构象中两性离子结构的显著贡献。13和14的77Se和125Te NMR信号相对于各自的荧光素-二硫茚衍生物向上移位:Δδ77Se = 17.2 ppm 和Δδ125Te = 22.0 ppm。13和14中氮原子(N1′和N8′)的存在导致对硒和碲核的屏蔽效应。
  • Mlochowski, Jacek; Szulc, Zdzislaw, Polish Journal of Chemistry, 1983, vol. 57, # 1/3, p. 33 - 39
    作者:Mlochowski, Jacek、Szulc, Zdzislaw
    DOI:——
    日期:——
  • MLOCHOWSKI, J.;SZULC, Z., POL. J. CHEM., 1983, 57, N 1-3, 33-39
    作者:MLOCHOWSKI, J.、SZULC, Z.
    DOI:——
    日期:——
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-N'-亚硝基尼古丁 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非尼拉朵 非尼拉敏 阿雷地平 阿瑞洛莫 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 锇二(2,2'-联吡啶)氯化物 链黑霉素 链黑菌素 银杏酮盐酸盐 铬二烟酸盐 铝三烟酸盐 铜-缩氨基硫脲络合物 铜(2+)乙酸酯吡啶(1:2:1) 铁5-甲氧基-6-甲基-1-氧代-2-吡啶酮 钾4-氨基-3,6-二氯-2-吡啶羧酸酯 钯,二氯双(3-氯吡啶-κN)-,(SP-4-1)-