摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

allyl 2,3,6-tri-O-benzoyl-β-D-galactofuranoside | 1236300-05-2

中文名称
——
中文别名
——
英文名称
allyl 2,3,6-tri-O-benzoyl-β-D-galactofuranoside
英文别名
[(2R)-2-[(2S,3S,4R,5R)-3,4-dibenzoyloxy-5-prop-2-enoxyoxolan-2-yl]-2-hydroxyethyl] benzoate
allyl 2,3,6-tri-O-benzoyl-β-D-galactofuranoside化学式
CAS
1236300-05-2
化学式
C30H28O9
mdl
——
分子量
532.547
InChiKey
HNEOVZXYMORZRF-OFBRLNSMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.7
  • 重原子数:
    39
  • 可旋转键数:
    14
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.23
  • 拓扑面积:
    118
  • 氢给体数:
    1
  • 氢受体数:
    9

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    allyl 2,3,6-tri-O-benzoyl-β-D-galactofuranoside四氢吡咯 作用下, 以 二氯甲烷 为溶剂, 反应 0.5h, 以73%的产率得到allyl 2,3,5-tri-O-benzoyl-β-D-galactofuranoside
    参考文献:
    名称:
    使用吡喃糖苷到呋喃糖苷重排和受控的O(5)→O(6)苯甲酰迁移作为合成策略的基础,以组装(1→5)-和(1→6)-连接的半乳​​糖呋喃糖基链
    摘要:
    选择性保护的吡喃半乳糖苷的新吡喃糖苷-呋喃糖苷(PIF)重排,然后受控的O(5)→O(6)苯甲酸酯迁移,得到5-OH或6-OH产品。它已被用于从烟曲霉中合成与半乳甘露聚糖有关的四种寡糖。通过应用末端甘露糖苷和双半呋喃糖苷嵌段,在半乳糖呋喃糖基残基之间包含(1→5)和(1→6)连接的目标寡糖的组装,形成了一种针对包含5-O-和6的真菌和细菌碳水化合物抗原的通用方法-O-取代的半乳糖呋喃糖苷残基。
    DOI:
    10.1021/acs.orglett.6b02735
  • 作为产物:
    描述:
    四氢吡咯 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 0.5h, 以88%的产率得到allyl 2,3,6-tri-O-benzoyl-β-D-galactofuranoside
    参考文献:
    名称:
    使用吡喃糖苷到呋喃糖苷重排和受控的O(5)→O(6)苯甲酰迁移作为合成策略的基础,以组装(1→5)-和(1→6)-连接的半乳​​糖呋喃糖基链
    摘要:
    选择性保护的吡喃半乳糖苷的新吡喃糖苷-呋喃糖苷(PIF)重排,然后受控的O(5)→O(6)苯甲酸酯迁移,得到5-OH或6-OH产品。它已被用于从烟曲霉中合成与半乳甘露聚糖有关的四种寡糖。通过应用末端甘露糖苷和双半呋喃糖苷嵌段,在半乳糖呋喃糖基残基之间包含(1→5)和(1→6)连接的目标寡糖的组装,形成了一种针对包含5-O-和6的真菌和细菌碳水化合物抗原的通用方法-O-取代的半乳糖呋喃糖苷残基。
    DOI:
    10.1021/acs.orglett.6b02735
点击查看最新优质反应信息

文献信息

  • Fidelity and Promiscuity of a Mycobacterial Glycosyltransferase
    作者:Kenzo Yamatsugu、Rebecca A. Splain、Laura L. Kiessling
    DOI:10.1021/jacs.6b04481
    日期:2016.7.27
    Members of the genus Mycobacterium cause devastating human diseases, including tuberculosis. Mycobacterium tuberculosis can resist some antibiotics because of its durable and impermeable cell envelope. This barrier is assembled from saccharide building blocks not found in mammals, including galactofuranose (Galf). Within the cell envelope, Galf residues are linked together to afford an essential polysaccharide, termed the galactan. The formation of this polymer is catalyzed by the glycosyltransferase GlfT2, a processive carbohydrate polymerase, which generates a sequence-specific polysaccharide with alternating regioisomeric beta(1-5) and beta(1-6) Galf linkages. GlfT2 exhibits high fidelity in linkage formation, as it will terminate polymerization rather than deviate from its linkage pattern. These findings suggest that GlfT2 would prefer an acceptor with a canonical alternating beta(1-5) and beta(1-6) Galf sequence. To test this hypothesis, we devised a synthetic route to assemble oligosaccharides with natural and non-natural sequences. GlfT2 could elongate each of these acceptors, even those with non-natural linkage patterns. These data indicate that the glycosyltransferase is surprisingly promiscuous in its substrate preferences. However, GlfT2 did favor some substrates: it preferentially acted on those in which the lipid-bearing Galf residue was connected to the sequence by a beta(1-6) glycosidic linkage. The finding that the relative positioning of the lipid and the non-reducing end of the acceptor influences substrate selectivity is consistent with a role for the lipid in acceptor binding. The data also suggest that the fidelity of GlfT2 for generating an alternating beta(1-5) and beta(1-6) pattern of Galf residues arises not from preferential substrate binding but during processive elongation. These observations suggest that inhibiting the action of GlfT2 will afford changes in cell wall structure.
  • Synthesis of galactofuranose-based acceptor substrates for the study of the carbohydrate polymerase GlfT2
    作者:Rebecca A. Splain、Laura L. Kiessling
    DOI:10.1016/j.bmc.2010.04.068
    日期:2010.6.1
    Despite the prevalence and importance of carbohydrate polymers, the molecular details of their biosynthesis remain elusive. Many enzymes responsible for the synthesis of carbohydrate polymers require a 'primer' or 'initiator' carbohydrate sequence. One example of such an enzyme is the mycobacterial galactofuranosyltransferase GlfT2 (Rv3808c), which generates an essential cell wall building block. We recently demonstrated that recombinant GlfT2 is capable of producing a polymer composed of alternating beta-(1,5) and beta-(1,6)-linked galactofuranose (Galf) residues. Intriguingly, the length of the polymers produced from a synthetic glycosyl acceptor is consistent with those found in the cell wall. To probe the mechanism by which polymer length is controlled, a collection of initiator substrates has been assembled. The central feature of the synthetic route is a ruthenium-catalyzed cross-metathesis as the penultimate transformation. Access to synthetic substrates has led us to postulate a new mechanism for length control in this template-independent polymerization. Moreover, our investigations indicate that lipids possessing but a single galactofuranose residue can act as substrates for GlfT2. (C) 2010 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸