Synthesis and Photoelectrochemical Performance of Chalcogenopyrylium Monomethine Dyes Bearing Phosphonate/Phosphonic Acid Substituents
摘要:
Chalcogenopyrylium monomethine dyes were prepared via condensation of a 4-methylchalcogenopyrylium compound with a chalcogenopyran-4-one bearing a 4-(diethoxyphosphoryl)phenyl substituent (or the phosphonic acid derivative). The dyes have absorbance maxima of 603-697 nm in the window where the solar spectrum is most intense. The dyes formed H-aggregates on TiO2, increasing the light-harvesting efficiency of the dyes. Shortcircuit photocurrent action spectra were acquired to evaluate the influence of dye structure on the photoelectrochemical performance.
Synthesis and Photoelectrochemical Performance of Chalcogenopyrylium Monomethine Dyes Bearing Phosphonate/Phosphonic Acid Substituents
摘要:
Chalcogenopyrylium monomethine dyes were prepared via condensation of a 4-methylchalcogenopyrylium compound with a chalcogenopyran-4-one bearing a 4-(diethoxyphosphoryl)phenyl substituent (or the phosphonic acid derivative). The dyes have absorbance maxima of 603-697 nm in the window where the solar spectrum is most intense. The dyes formed H-aggregates on TiO2, increasing the light-harvesting efficiency of the dyes. Shortcircuit photocurrent action spectra were acquired to evaluate the influence of dye structure on the photoelectrochemical performance.
Synthesis and Photoelectrochemical Performance of Chalcogenopyrylium Monomethine Dyes Bearing Phosphonate/Phosphonic Acid Substituents
作者:Matthew A. Bedics、Kacie R. Mulhern、David F. Watson、Michael R. Detty
DOI:10.1021/jo401280s
日期:2013.9.6
Chalcogenopyrylium monomethine dyes were prepared via condensation of a 4-methylchalcogenopyrylium compound with a chalcogenopyran-4-one bearing a 4-(diethoxyphosphoryl)phenyl substituent (or the phosphonic acid derivative). The dyes have absorbance maxima of 603-697 nm in the window where the solar spectrum is most intense. The dyes formed H-aggregates on TiO2, increasing the light-harvesting efficiency of the dyes. Shortcircuit photocurrent action spectra were acquired to evaluate the influence of dye structure on the photoelectrochemical performance.