作者:Satoko Maruyama、Kazuya Kikuchi、Tomoya Hirano、Yasuteru Urano、Tetsuo Nagano
DOI:10.1021/ja026442n
日期:2002.9.1
Zn(2+) plays important roles in various biological systems; as a result, the development of tools that can visualize chelatable Zn(2+) has attracted much attention recently. We report here newly synthesized fluorescent sensors for Zn(2+), ZnAF-Rs, whose excitation maximum is shifted by Zn(2+) under physiological conditions. Thus, these sensors enable ratiometric imaging, which is a technique to reduce artifacts by minimizing the influence of extraneous factors on the fluorescence of a probe. Ratiometric measurement can provide precise data, and some probes allow quantitative detection. ZnAF-Rs are the first ratiometric fluorescent sensors for Zn(2+) that enable quantitative analysis under physiological conditions. ZnAF-Rs also possess suitable K(d) for applications, and high selectivity against other biologically relevant cations, especially Ca(2+). Using these probes, changes of intracellular Zn(2+) concentration in cultured cells were monitored successfully. We believe that these probes will be extremely useful in studies on the biological functions of Zn(2+).