Several Mannich ketones of 2-arylmethylenecycloalkanones were synthesised using the classical acid-catalysed Mannich reaction. Antibacterial activity of these new water-soluble compounds was reported against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus saprophyticus, Micrococcus luteus and Bacillus subtilis standard strains. Human cell line cytotoxicity of our new compounds was evaluated against HeLa cell lines. Some compounds showed low cytotoxicity (41.52 nM mL(-1) for 14 and 46.60 nM mL(-1) for 18) and proved to be efficient antibacterial agents against the Gram-positive strains. Minimum inhibitory concentrations varied from 1.56 to 100 mug mL(-1). The mechanism of action was examined, too. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
Myeloid differentiation 2 (MD2) is essential to the recognition of lipopolysaccharide (LPS) and the subsequent mediation of toll-like receptor 4 (TLR4)-dependent acute inflammatory disorders including sepsis and acute lung injury. Inhibitors targeting MD2 may provide an alternative means to subdue acute inflammatory diseases. In the present study, 39 bisaryl-1,4-dien-3-one compounds with 5-carbon connection chains were designed and synthesized as MD2 inhibitors based on the analysis of the molecular docking of xanthohumol to MD2. The compound-MD2 interactions were measured by cell-free assays including bis-ANS displacement and SPR, and the active compounds were further tested for MD2 inhibition and anti-inflammatory activities in LPS-challenged macrophages. The most active compound, 1f, was shown to have remarkable protective effects against sepsis shock and pulmonary inflammation. Collectively, we present evidence that bisaryl-1,4-dien-3-one is a new lead structure for the development of anti-inflammatory agents targeting MD2. (C) 2017 Elsevier Masson SAS. All rights reserved.
Redox-Neutral Cobalt(III)-Catalyzed C–H Activation/Annulation of α,β-Unsaturated Oxime Ether with Alkyne: One-Step Access to Multisubstituted Pyridine
A redox neutral Co(III)-catalyzed annulation of α,β-unsaturated oxime ether with alkyne has been reported. Multisubstituted pyridines were synthesized in good yields without the use of any heavy metal oxidants. The developed methodology tolerates a variety of functional groups. Notably, this transformation has been applied to the late-stage modification of the bioactive molecule dehydropregnenolone