N- and C-terminal diallylated peptides are obtained by several approaches, such as peptide Claisen rearrangement, N- and O- allylation, and the Ugi reaction of allyl-protected components. These diallylated peptides are suitable substrates for ring-closing metathesis and the success of this cyclisation was investigated with respect to the ring size, the position of the allyl moieties and the reaction
The natural compounds triostin and thiocoraline are potent antitumor agents that act as DNA bisintercalators. From a pharmaceutical point of view, these compounds are highly attractive although they present a low pharmacokinetic profile, in part due to their low solubility. Synthetically, they represent a tour de force because no robust strategies have been developed to access a broad range of these bicyclic (depsi)peptides in a straightforward manner. Here we describe solid-phase strategies to synthesize new bisintercalators, such as thiocoraline triostin hybrids, as well is analogues bearing soluble tags. Orthogonal protection schemes (up to, five from: Fmoc, Boc Alloc, pNZ, o-NBS, and Troc), together with the right concourse of the coupling reagents (HOSu, HOBt, HOAt, Oxyma, EDC, DIPCDI, PyAOP, PyBOP, HATU, COMU), were crucial to establish the synthetic plan. In vitro studies and structure activity relationships have been shown trends in the structure activity relationship that Will facilitate the design of new bisintercalators.