Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjögren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatography–electrospray ionization–quadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjögren-Larsson syndrome, in more detail.
神经酰胺1-
磷酸(S1P)是一种参与多种生理过程的
生物活性脂质,能够被膜结合的S1P裂解酶(S1PL)不可逆降解,生成(2E)-
己烯醛和
磷酸乙醇胺。讨论指出,(2E)-
己烯醛在通过与
辅酶A(CoA)结合激活之前,会被长链脂肪
醛脱氢酶ALDH3A2(也称为FALDH)进一步氧化为(2E)-己烯酸。如果这些酶中的任一酶,即S1PL或FALDH被抑制或出现缺陷,将导致严重的免疫疾病或干燥综合症,分别。因此,同时测定
生物样本中S1P降解产物(2E)-
己烯醛及其
脂肪酸代谢物具有重要意义。然而,迄今为止尚无有效的方法。本文提出了一种灵敏且选择性强的同位素稀释高效
液相色谱-电喷雾离子化-四极杆/飞行时间质谱法,用于在经过与2-二
苯乙酰基-1,3-
茚二酮-1-
肼联用和1-乙基-3-(3-(
二甲氨基)丙基)
氨基
脲后, simultaneously量化(2E)-
己烯醛及其
脂肪酸代谢物。我们呈现了样品衍生化、色谱分离和MS/MS检测的优化条件,以及广泛的方法验证。最终,我们的方法成功应用于
生物样本。我们发现(2E)-
己烯醛几乎完全被氧化为(2E)-己烯酸,并且在HepG2细胞裂解液中与(2E)-
己烯醛和酰基-CoA合成酶
抑制剂triacsin C共同处理的实验中得到了验证。此外,使用重标记(2E)-
己烯醛处理细胞裂解液的实验揭示,未从醛形成
己酸。因此,我们的方法为神经酰胺代谢提供了新的见解,并将在研究与长链
脂肪酸代谢异常相关的疾病(例如干燥综合症)时发挥重要作用。