摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-phenyl-2,2-d2-ethyl 4-methylbenzenesulfonate | 53907-39-4

中文名称
——
中文别名
——
英文名称
2-phenyl-2,2-d2-ethyl 4-methylbenzenesulfonate
英文别名
toluene-4-sulfonic acid-(β,β-dideuterio-phenethyl ester);Toluol-4-sulfonsaeure-(β,β-dideuterio-phenaethylester);p-Toluolsulfonsaeure-<2-phenyl-ethyl-(2,2-d2)-ester>;2-Phenylethyl-2,2-d(2)-p-toluolsulfonat;2-Phenyl-(2-d2)ethyl-p-toluolsulfonat;2-Phenylethyl-p-toluolsulfonat-2,2-d2;(2,2-dideuterio-2-phenylethyl) 4-methylbenzenesulfonate
2-phenyl-2,2-d2-ethyl 4-methylbenzenesulfonate化学式
CAS
53907-39-4
化学式
C15H16O3S
mdl
——
分子量
278.34
InChiKey
CVPPUZPZPFOFPK-ZWGOZCLVSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.94
  • 重原子数:
    19.0
  • 可旋转键数:
    5.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.2
  • 拓扑面积:
    43.37
  • 氢给体数:
    0.0
  • 氢受体数:
    3.0

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    金亚乙烯基的实验和计算证据:通过分叉途径和简单的 C-H 插入从末端炔烃生成
    摘要:
    提议通过两个分子的 BrettPhosAuNTf(2) 协同促进(2-乙炔基苯基)炔烃的简便环异构化,从而以良好的收率提供三环茚。基于机理研究和理论计算,金亚乙烯基最有可能作为反应中间体之一产生。与众所周知的 Rh、Ru 和 W 对应物不同,这种新型金物种具有高度的反应性,并且易于进行分子内 C(sp(3))-H 插入以及 OH 和 NH 插入。理论上预测亚乙烯基金的形成步骤与分叉的反应途径复杂。吡啶N-氧化物充当弱碱以促进炔基金中间体的形成,
    DOI:
    10.1021/ja2091992
  • 作为产物:
    参考文献:
    名称:
    ETTINGER, MICHAEL D.;MAHASAY, SUMIT R.;STOCK, LEON M.;ZABRANSKY, ROBERT F+, ENERGY AND FUELS, 1,(1987) N 3, 274-279
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Thermolysis of Phenethyl Phenyl Ether: A Model for Ether Linkages in Lignin and Low Rank Coal
    作者:Phillip F. Britt、A. C. III Buchanan、Elizabeth A. Malcolm
    DOI:10.1021/jo00125a044
    日期:1995.10
    The thermolysis of phenethyl phenyl ether (PPE) was studied at 330-425 degrees C to resolve the discrepancies in the reported mechanisms of this important model of the beta-ether linkage found in lignin and low rank coal. Cracking of PPE proceeded by two competitive pathways that produced styrene plus phenol and two previously undetected products, benzaldehyde plus toluene. The ratio of these pathways, defined as the alpha/beta selectivity, was 3.1 +/- 0.3 at 375 degrees C and independent of the PPE concentration. The kinetic order over ca. 10(3) variation in the initial concentration from the neat liquid, in solutions with biphenyl, and in the gas phase was 1.29 +/- 0.02. The rate expression for the decomposition in the liquid phase was log (k/M(-0.29) s(-1)) = (11.4 +/- 0.1) - (46.4 +/- 1.0)/2.303RT. The reaction could be accelerated by the addition of a free-radical initiator or a hydrogen bonding solvent, such as p-phenylphenol, but the product composition was altered with the latter. Thermolysis of PPE in tetralin, a model hydrogen donor solvent, increased the alpha/beta selectivity to 7 and accelerated the formation of secondary products. All the data was consistent with a free-radical chain mechanism for the decomposition of PPE. Styrene and phenol are produced by hydrogen abstraction at the alpha-carbon, beta-scission to form styrene and the phenoxy radical, followed by hydrogen abstraction. Benzaldehyde and toluene are formed by hydrogen abstraction at the beta-carbon, 1,2-phenyl migration from oxygen to carbon, beta-scission to form benzaldehyde, and the benzyl radical, followed by hydrogen abstraction. Thermochemical kinetic estimates indicate that product formation is controlled by the relative rate of hydrogen abstraction at the alpha- and beta-carbons by the phenoxy radical (dominant) and benzyl radical (minor) since beta-scission and 1,2-phenyl migration are fast relative to hydrogen abstraction. The electrophilic phenoxy radical has an inherently lower alpha/beta selectivity than the nonpolar benzyl radical because it benefits from the polar effects of the alpha-oxygen at the beta-carbon. The rate of the 1,2-phenyl migration was much faster than interconversion of 1-phenoxy-2-phenyl-1-ethyl radical and 1-phenoxy-2-phenyl-2-ethyl radical, and an activation barrier of <18 kcal mol(-1) was estimated for the 1,2-phenyl migration. Thermolysis of PhCD(2)CH(2)OPh and PhCH(2)CD(2)OPh was consistent with the previous results, indicating that there was no significant contribution of a concerted retro-ene pathway to the thermolysis of PPE.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫