摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(R)-2-(1H-indol-3-yl)-2-oxo-N-(1-phenylethyl)acetamide | 355022-79-6

中文名称
——
中文别名
——
英文名称
(R)-2-(1H-indol-3-yl)-2-oxo-N-(1-phenylethyl)acetamide
英文别名
2-(1H-indol-3-yl)-2-oxo-N-[(1R)-1-phenylethyl]acetamide
(R)-2-(1H-indol-3-yl)-2-oxo-N-(1-phenylethyl)acetamide化学式
CAS
355022-79-6
化学式
C18H16N2O2
mdl
——
分子量
292.337
InChiKey
JCQKMELKMGOGMR-GFCCVEGCSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    213 °C
  • 密度:
    1.250±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    22
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.11
  • 拓扑面积:
    62
  • 氢给体数:
    2
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    在[4 + 2]环加成反应中,电子贫乏的吲哚为亲二烯体的化学选择性完全逆转。Diels-Alder与异质Diels-Alder流程。
    摘要:
    吲哚-3-羧醛1a或吲哚-3-乙二醛酸酯1b与2,3-二甲基丁二烯在热活化下的反应仅导致由吲哚2,3-碳-碳双键的参与而产生的Diels-Alder环加合物。氯化锌和高压(16 kbar)的同时使用会引起初级环加合物进一步反应,现在双环加合物11和12的收率很高,这是两个连续[4 + 2]过程的结果,首先是吲哚2,3 C = C键,其次是3-羰基单元。四环化合物13的制备证明了在串联的顺序过程中使用两种不同的二烯的可能性。羰基双亲烯与Danishefsky二烯之间的相互作用仅产生另一种类型的产物,即由顺序的[4 + 2]杂环加成,甲硅烷基烯醇醚的水解以及甲醇的损失产生的γ-二氢吡喃酮。Mukaiyama型加合物16的分离表明,至少在氯化锌催化下,可能涉及逐步机理。N,N-二取代的吲哚-3-乙二酰胺经过预期的,通常的Diels-Alder工艺,以2,3 C = C键作为亲二烯体,无论采用哪种
    DOI:
    10.1021/jo034719b
  • 作为产物:
    参考文献:
    名称:
    在[4 + 2]环加成反应中,电子贫乏的吲哚为亲二烯体的化学选择性完全逆转。Diels-Alder与异质Diels-Alder流程。
    摘要:
    吲哚-3-羧醛1a或吲哚-3-乙二醛酸酯1b与2,3-二甲基丁二烯在热活化下的反应仅导致由吲哚2,3-碳-碳双键的参与而产生的Diels-Alder环加合物。氯化锌和高压(16 kbar)的同时使用会引起初级环加合物进一步反应,现在双环加合物11和12的收率很高,这是两个连续[4 + 2]过程的结果,首先是吲哚2,3 C = C键,其次是3-羰基单元。四环化合物13的制备证明了在串联的顺序过程中使用两种不同的二烯的可能性。羰基双亲烯与Danishefsky二烯之间的相互作用仅产生另一种类型的产物,即由顺序的[4 + 2]杂环加成,甲硅烷基烯醇醚的水解以及甲醇的损失产生的γ-二氢吡喃酮。Mukaiyama型加合物16的分离表明,至少在氯化锌催化下,可能涉及逐步机理。N,N-二取代的吲哚-3-乙二酰胺经过预期的,通常的Diels-Alder工艺,以2,3 C = C键作为亲二烯体,无论采用哪种
    DOI:
    10.1021/jo034719b
点击查看最新优质反应信息

文献信息

  • Novel <i>N</i>-(Arylalkyl)indol-3-ylglyoxylylamides Targeted as Ligands of the Benzodiazepine Receptor:  Synthesis, Biological Evaluation, and Molecular Modeling Analysis of the Structure−Activity Relationships
    作者:Giampaolo Primofiore、Federico Da Settimo、Sabrina Taliani、Anna Maria Marini、Ettore Novellino、Giovanni Greco、Antonio Lavecchia、François Besnard、Letizia Trincavelli、Barbara Costa、Claudia Martini
    DOI:10.1021/jm010827j
    日期:2001.7.1
    A series of N-(arylalkyl)indol-3-ylglyoxylylamides (4-8) was synthesized as ligands of the benzodiazepine receptor (BzR) and tested for their ability to displace [H-3]flumazenil from bovine brain membranes. The new compounds, bearing a branched (4) or a geometrically constrained benzyl/phenylethyl amide side chain (5-8), represent the continuation of our research on N-benzylindol-3-ylglyoxylylamides 1 (Da Settimo et al., 1996), N ' -phenylindol-3-ylglyoxylohydrazides 2 (Da Settimo et al., 1998), and N-(indol-3-ylglyoxylyl)alanine derivatives 3 (Primofiore et al., 1989). A few indoles belonging to the previously investigated benzylamides 1 and phenylhydrazides 2 were synthesized and tested to enrich the SARs in these two series. The affinities and the GABA ratios of selected compounds for clonal mammalian alpha (1)beta (2)gamma (2), alpha (3)beta (2)gamma (2), and alpha (5)beta (3 gamma2) BzR subtypes were also determined. It was hypothesized that the reduced flexibility of indoles 4-8 would both facilitate the mapping of the BzR binding cleft and increase the chances of conferring selectivity for the considered receptor subtypes. In the series of indoles 4, the introduction of a methyl group on the benzylic carbon with the R configuration improved affinity of the 5-substituted (5-Cl and 5-NO2) derivatives, whereas it was detrimental for their 5-unsubtituted (5-H) counterparts. All S enantiomers were less potent than the R ones. Replacement of the methyl with hydrophilic substituents on the benzylic carbon lowered affinity. The isoindolinylamide side chain was tolerated if the 5-position was unsubstituted (K-i of 5a 123 nM), otherwise affinity was abolished (5b, c). All the 2-indanylamides 6 and (S)-1-indanylamides 8 were devoid of any appreciable affinity. The 5-Cl and 5-NO2 (R)-1-indanylamides 7b (K-i 80 nM) and 7c (K-i 28 nM) were the most potent among the indoles 5-8 geometrically constrained about the side chain. The 5-H (R)-1-indanylamide 7a displayed a lower affinity (K-i 675 nM). The SARs developed from the new compounds, together with those collected from our previous studies, confirmed the hypothesis of different binding modes for 5-substituted and 5-unsubstituted indoles, suggesting that the shape of the lipophilic pocket L-1 (notation in accordance with Cook's BzR topological model) is asymmetric and highlighted the stereoelectronic and conformational properties of the amide side chain required for high potency. Several of the new indoles showed selectivity for the alpha (1)beta (2)gamma (2) subtype compared with the alpha (3)beta (2)gamma (2) and alpha (5)beta (3)gamma (2) subtypes (e.g.: 4t and 7c bind to these three BzR isoforms with Ki values of 14 nM, 283 nM, 239 nM, and 9 nM, 1960 nM, 95 nM, respectively). The GABA ratios close to unity exhibited by all the tested compounds on each BzR subtype were predictive of an efficacy profile typical of antagonists.
  • Complete and Remarkable Reversal of Chemoselectivity in [4 + 2] Cycloadditions Involving Electron-Poor Indoles as Dienophiles. Diels−Alder versus Hetero-Diels−Alder Processes
    作者:Antony Chrétien、Isabelle Chataigner、Nathalie L'Hélia、Serge R. Piettre
    DOI:10.1021/jo034719b
    日期:2003.10.1
    and 12 are now isolated in high yields, the result of two consecutive [4 + 2] processes on, first, the indole 2,3 C=C bond and, second, the 3-carbonyl unit. The possibility of using two different dienes in a tandem, sequential process is demonstrated by the preparation of tetracycle 13. Interactions between the carbonyl dienophile and Danishefsky diene yield exclusively yet another type of product, namely
    吲哚-3-羧醛1a或吲哚-3-乙二醛酸酯1b与2,3-二甲基丁二烯在热活化下的反应仅导致由吲哚2,3-碳-碳双键的参与而产生的Diels-Alder环加合物。氯化锌和高压(16 kbar)的同时使用会引起初级环加合物进一步反应,现在双环加合物11和12的收率很高,这是两个连续[4 + 2]过程的结果,首先是吲哚2,3 C = C键,其次是3-羰基单元。四环化合物13的制备证明了在串联的顺序过程中使用两种不同的二烯的可能性。羰基双亲烯与Danishefsky二烯之间的相互作用仅产生另一种类型的产物,即由顺序的[4 + 2]杂环加成,甲硅烷基烯醇醚的水解以及甲醇的损失产生的γ-二氢吡喃酮。Mukaiyama型加合物16的分离表明,至少在氯化锌催化下,可能涉及逐步机理。N,N-二取代的吲哚-3-乙二酰胺经过预期的,通常的Diels-Alder工艺,以2,3 C = C键作为亲二烯体,无论采用哪种
查看更多

同类化合物

(Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (R)-(+)-5'-苄氧基卡维地洛 (R)-卡洛芬 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (3Z)-3-(1H-咪唑-5-基亚甲基)-5-甲氧基-1H-吲哚-2-酮 (3Z)-3-[[[4-(二甲基氨基)苯基]亚甲基]-1H-吲哚-2-酮 (3R)-(-)-3-(1-甲基吲哚-3-基)丁酸甲酯 (3-氯-4,5-二氢-1,2-恶唑-5-基)(1,3-二氧代-1,3-二氢-2H-异吲哚-2-基)乙酸 齐多美辛 鸭脚树叶碱 鸭脚木碱,鸡骨常山碱 鲜麦得新糖 高氯酸1,1’-二(十六烷基)-3,3,3’,3’-四甲基吲哚碳菁 马鲁司特 马来酸阿洛司琼 马来酸替加色罗 顺式-ent-他达拉非 顺式-1,3,4,4a,5,9b-六氢-2H-吡啶并[4,3-b]吲哚-2-甲酸乙酯 顺式-(+-)-3,4-二氢-8-氯-4'-甲基-4-(甲基氨基)-螺(苯并(cd)吲哚-5(1H),2'(5'H)-呋喃)-5'-酮 靛红联二甲酚 靛红磺酸钠 靛红磺酸 靛红乙烯硫代缩酮 靛红-7-甲酸甲酯 靛红-5-磺酸钠 靛红-5-磺酸 靛红-5-硫酸钠盐二水 靛红-5-甲酸甲酯 靛红 靛玉红3'-单肟5-磺酸 靛玉红-3'-单肟 靛玉红 青色素3联己酸染料,钾盐 雷马曲班 雷莫司琼杂质13 雷莫司琼杂质12 雷莫司琼杂质 雷替尼卜定 雄甾-1,4-二烯-3,17-二酮 阿霉素的代谢产物盐酸盐 阿贝卡尔 阿西美辛叔丁基酯 阿西美辛 阿莫曲普坦杂质1 阿莫曲普坦 阿莫曲坦二聚体杂质 阿莫曲坦 阿洛司琼杂质