Effect of phenyl ring substitution on J-aggregate formation ability of novel bisazomethine dyes in vapour-deposited films
摘要:
Bisazomethine dyes, which are synthesized using diaminomaleonitrile and aminobenzaldehydes, exhibit red fluorescence in solution and in the solid state. Several bisazomethine dyes are known to form J-aggregates in vapour-deposited films. In this work, novel bisazomethine dyes were synthesized and the effect of phenyl ring substitution on the J-aggregate formation in vapour-deposited films was examined. The optical properties of the dyes were examined in solution and in the solid state through molecular orbital calculations. Four derivatives were found to form J-aggregates in vapour-deposited films as determined from the shape of the spectrum and the absorption edge. (C) 2010 Elsevier Ltd. All rights reserved.
Effect of phenyl ring substitution on J-aggregate formation ability of novel bisazomethine dyes in vapour-deposited films
摘要:
Bisazomethine dyes, which are synthesized using diaminomaleonitrile and aminobenzaldehydes, exhibit red fluorescence in solution and in the solid state. Several bisazomethine dyes are known to form J-aggregates in vapour-deposited films. In this work, novel bisazomethine dyes were synthesized and the effect of phenyl ring substitution on the J-aggregate formation in vapour-deposited films was examined. The optical properties of the dyes were examined in solution and in the solid state through molecular orbital calculations. Four derivatives were found to form J-aggregates in vapour-deposited films as determined from the shape of the spectrum and the absorption edge. (C) 2010 Elsevier Ltd. All rights reserved.
Bisazomethine dyes, which are synthesized using diaminomaleonitrile and aminobenzaldehydes, exhibit red fluorescence in solution and in the solid state. Several bisazomethine dyes are known to form J-aggregates in vapour-deposited films. In this work, novel bisazomethine dyes were synthesized and the effect of phenyl ring substitution on the J-aggregate formation in vapour-deposited films was examined. The optical properties of the dyes were examined in solution and in the solid state through molecular orbital calculations. Four derivatives were found to form J-aggregates in vapour-deposited films as determined from the shape of the spectrum and the absorption edge. (C) 2010 Elsevier Ltd. All rights reserved.