A Self-Assembled Monolayer for the Binding and Study of Histidine-Tagged Proteins by Surface Plasmon Resonance
作者:George B. Sigal、Cynthia Bamdad、Alcide Barberis、Jack Strominger、George M. Whitesides
DOI:10.1021/ac9504023
日期:1996.2.1
monolayer (SAM) that selectively binds proteins whose primary sequence terminates with a His-tag: a stretch of six histidines commonly incorporated in recombinant proteins to simplify purification. The SAM was prepared by the adsorption onto a gold surface of a mixture of two alkanethiols: one thiol that terminated with a nitrilotriacetic acid (NTA) group, a group that forms a tetravalent chelate with Ni(II)
An article that includes a functionalized copolymer and the use thereof, particularly in a process for binding biomaterials, such as in a process for separating aggregated proteins from monomeric proteins in a biological solution; wherein the article includes: a) a porous substrate; and b) a copolymer covalently attached to the porous substrate, the copolymer comprising a hydrocarbon backbone and a plurality of pendant groups attached to the hydrocarbon backbone, wherein 1) each of a first plurality of pendant groups comprises: (a) at least one acidic group or salt thereof; and (b) a spacer group that directly links the at least one acidic group or salt thereof to the hydrocarbon backbone by a chain of at least 6 catenated atoms; and 2) each of a second plurality of pendant groups comprises: (a) at least one acidic group or salt thereof; and (b) a spacer group that directly links the at least one acidic group or salt thereof to the hydrocarbon backbone by a chain of at least 6 catenated atoms; and wherein the first plurality of pendant groups are different than the second plurality of pendant groups; and wherein a mole ratio of the first plurality of pendant groups to the second plurality of pendant groups is in a range of 95:5 to 5:95.
SITE-SPECIFIC LABELING OF AFFINITY TAGS IN FUSION PROTEINS
申请人:LIFE TECHNOLOGIES CORPORATION
公开号:US20160025713A1
公开(公告)日:2016-01-28
The present invention provides methods and fluorescent compounds that facilitate detecting and labeling of a fusion protein by being capable of selectively binding to an affinity tag. The fluorescent compounds have the general formula A(B)n, wherein A is a fluorophore, B is a binding domain that is a charged chemical moiety, a protein or fragment thereof and n is an integer from 1-6 with the proviso that the protein or fragment thereof not be an antibody or generated from an antibody. The present invention provides specific fluorescent compounds and methods used to detect and label fusion proteins that contain a poly-histidine affinity tag. These compounds have the general formula A(L)m(B)n wherein A is a fluorophore, L is a linker, B is an acetic acid binding domain, m is an integer from 1 to 4 and n is an integer from 1 to 6. The acetic acid groups interact directly with the positively charged histidine residues of the affinity tag to effectively label and detect a fusion protein containing such an affinity tag when present in an acidic or neutral environment.
Micro-nano materials, products obtained by covalently modifying the surfaces of micro/nano materials with hydrophilic materials, and methods for making the same. The micro/nano materials on the surfaces have carboxyl groups or/and pro-carboxyl groups which are converted into their active esters. The products are covalently modified by forming amide bonds between the active esters on the surfaces and the modification agents; where the modification agents are hydrophilic compounds and/or hydrophilic polymers bearing primary and/or secondary aliphatic amines. Monomers bearing carboxyl groups and/or pro-carboxyl groups are used to produce an adequate number of carboxyl groups and/or pro-carboxyl groups on the surface of a polymer material to be modified. The carboxyl groups and/or pro-carboxyl groups are converted into active esters. A reasonably-sized modification agent bearing primary and/or secondary amines, zwitterions and hydrophilic linear spacer arms is used to form amide bonds and obtain a covalently modified surface layer.