Development of Novel Benzomorpholine Class of Diacylglycerol Acyltransferase I Inhibitors
摘要:
Diacylglycerol acyltransferase 1 (DGAT1) presents itself as a potential therapeutic target for obesity and diabetes for its important role in triglyceride biosynthesis. Herein we report the rational design of a novel class of DGAT1 inhibitors featuring a benzomorpholine core (23n). SAR exploration yielded compounds with good potency and selectivity as well as reasonable physical and pharmacokinetic properties. This class of DGAT1 inhibitors was tested in rodent models to evaluate DGAT1 inhibition as a novel approach for the treatment of metabolic diseases. Compound 23n conferred weight loss and a reduction in liver triglycerides when dosed chronically in mice with diet-induced obesity and depleted serum triglycerides following a lipid challenge.
BICYCLIC COMPOUNDS AS INHIBITORS OF DIACYGLYCEROL ACYLTRANSFERASE
申请人:Zhou Gang
公开号:US20120022057A1
公开(公告)日:2012-01-26
The present invention relates to novel heterocyclic compounds as diacylglycerol acyltransferase (“DGAT”) inhibitors, pharmaceutical compositions comprising the heterocyclic compounds and the use of the compounds for treating or preventing a cardiovascular disease, a metabolic disorder, obesity or an obesity-related disorder, diabetes, dyslipidemia, a diabetic complication, impaired glucose tolerance or impaired fasting glucose. An illustrative compound of the invention is shown below (I).
Diacylglycerol acyltransferase 1 (DGAT1) presents itself as a potential therapeutic target for obesity and diabetes for its important role in triglyceride biosynthesis. Herein we report the rational design of a novel class of DGAT1 inhibitors featuring a benzomorpholine core (23n). SAR exploration yielded compounds with good potency and selectivity as well as reasonable physical and pharmacokinetic properties. This class of DGAT1 inhibitors was tested in rodent models to evaluate DGAT1 inhibition as a novel approach for the treatment of metabolic diseases. Compound 23n conferred weight loss and a reduction in liver triglycerides when dosed chronically in mice with diet-induced obesity and depleted serum triglycerides following a lipid challenge.