Stereoselective Hydrogenolysis of 1,1-Dibromo-1-alkenes and Stereospecific Synthesis of Conjugated (<i>Z</i>)-Alkenyl Compounds
作者:Jun'ichi Uenishi、Reiko Kawahama、Osamu Yonemitsu、Jiro Tsuji
DOI:10.1021/jo9812781
日期:1998.11.1
The Pd-catalyzed hydrogenolysis of 1,1-dibromoalkenes with Bu3SnH occurs at room temperature stereoselectively to give (Z)-1-bromo-1-alkenes. We sought to determine the optimal reaction conditions and illustrate the scope of this method with 32 dibromoalkenes including alkenyl- and alkynyl-conjugated 1,l-dibromo-l-alkenes 7a-h and 2,2-disubstituted I,1-dibromo-1-alkenes 9a-f. Triphenylphosphine was the best ligand for the Pd-catalyzed hydrogenolysis. A wide range of solvents can be used for this reaction excluding EtOH, AcOH, and CHCl3. However, the reaction proceeds even in these solvents with the addition of a cosolvent or radical scavenger. The reaction of 1,1-diiodo-1-alkene (3) gave a mixture of (Z)-1-iodo-1-alkene (4), (Z)-1-tributylstannyl-1-alkene (5), and a terminal alkene 6, while that of 1,1-dichloroalkene did not occur. This selectivity can be explained by the stereoselective insertion of Pd(0) to a trans bromine-alkenyl carbon bond, successive transmetalation with Bu3SnH, and reductive elimination. The Suzuki and Sonogashira couplings of the resulting (Z)-1-bromo-1-alkenes with alkenyl(dialkoxy)borane and terminal alkyne occurred to give conjugated polyenes and enynes stereospecifically. The Pd-catalyzed hydrogenolysis of 1,l-dibromo-l-alkene and successive cross-coupling can be carried out either in a stepwise manner or in one-pot under the same Pd catalysis. These two processes should be useful for the synthesis of geometrically pure polyene and enyne with a Z-alkenyl unit.