摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

glutaric acid mono-(4,5-dimethoxy-2-nitrobenzyl) ester | 457612-05-4

中文名称
——
中文别名
——
英文名称
glutaric acid mono-(4,5-dimethoxy-2-nitrobenzyl) ester
英文别名
5-[(4,5-Dimethoxy-2-nitrophenyl)methoxy]-5-oxopentanoic acid
glutaric acid mono-(4,5-dimethoxy-2-nitrobenzyl) ester化学式
CAS
457612-05-4
化学式
C14H17NO8
mdl
——
分子量
327.291
InChiKey
MSPFMZDKLXGBMN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    110-111 °C
  • 沸点:
    530.0±50.0 °C(Predicted)
  • 密度:
    1.329±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.2
  • 重原子数:
    23
  • 可旋转键数:
    9
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.43
  • 拓扑面积:
    128
  • 氢给体数:
    1
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Isotope Effects in Photochemistry:  Application to Chromatic Orthogonality
    摘要:
    The main challenge in developing new wavelength-specific photolabile protecting groups is the rigorous control of the photolysis rate. This rate is controlled by two factors: the chromophore absorbance and the reaction quantum yield. Fine-tuning the properties by changing substituents or structural features is difficult, because both factors are independently affected. By the use of the kinetic isotope effect, we could tune the quantum yield without altering the absorbance, and hence control the overall reaction rate. We exemplified this approach with chromatically orthogonally protected diesters.
    DOI:
    10.1021/ol070820h
  • 作为产物:
    描述:
    6-硝基藜芦醛吡啶4-二甲氨基吡啶 、 sodium tetrahydroborate 作用下, 以 甲醇氯仿 为溶剂, 反应 25.0h, 生成 glutaric acid mono-(4,5-dimethoxy-2-nitrobenzyl) ester
    参考文献:
    名称:
    Wavelength-Controlled Orthogonal Photolysis of Protecting Groups
    摘要:
    The selective control of a chemical process by the use of an electromagnetic wave has been a challenging goal for several decades. In this article, we describe for the first time the use of a monochromatic light beam to differentiate two different reactive centers. A direct application of this concept is found in the chemistry of protecting groups. Two different photolabile protecting groups were tuned to be responsive to a specific wavelength (e.g., 254 or 420 nm). Using derivatives of the 2-nitroveratryl fragment (such as 10, sensitive at 420 nm) and 3',5'-dimethoxybenzoin fragment (such as 4, sensitive at 254 nm), it was shown that energy transfer phenomena did not erode the selectivity. Both the inter- and the intramolecular cases were studied and showed selectivities within the synthetically useful range. Hence, we could replace the traditional chemical orthogonality by a chromatic orthogonality.
    DOI:
    10.1021/jo025837m
点击查看最新优质反应信息

文献信息

  • Sequentially Photocleavable Protecting Groups in Solid-Phase Synthesis
    作者:Martin Kessler、Ralf Glatthar、Bernd Giese、Christian G. Bochet
    DOI:10.1021/ol027454g
    日期:2003.4.1
    [reaction: see text] A sequential solid-phase peptide synthesis was developed using both photolabile linker and protecting groups. The chromatic sequential lability between a tert-butyl ketone-derived linker (sensitive to irradiation at 305 nm) and a nitroveratryloxycarbonyl (NVOC) group (sensitive at 360 nm) was exploited to prepare Leu-Enkephalin in a 55% overall yield. This new strategy allows the
    [反应:见正文]使用光不稳定的连接基和保护基团开发了顺序的固相肽合成方法。利用叔丁基酮衍生的连接基(对305 nm的辐射敏感)和硝基过碳酰氧羰基(NVOC)基团(对360 nm敏感)之间的色序不稳定性来制备亮氨酸-脑啡肽,总产率为55%。通过避免使用常见的脱保护试剂(例如三氟乙酸或哌啶),该新策略允许在基本中性的介质中制备肽。
  • Isotope Effects in Photochemistry. 1. <i>o</i>-Nitrobenzyl Alcohol Derivatives
    作者:Aurélien Blanc、Christian G. Bochet
    DOI:10.1021/ja049686b
    日期:2004.6.1
    The photolysis of o-nitrobenzyl alcohol derivatives shows a strong kinetic isotope effect (KIE up to 8.3) at the benzylic center. For some derivatives, the KIE is wavelength dependent, suggesting the involvement of higher excited states. In addition to the important mechanistic consequences, isotopic substitution is a convenient way to alter the quantum yield without changing the absorbance, as would the introduction of substituents. This paves the way for a subtle tuning of the reaction rates in photochemical reactions. We illustrated this feature in the sequential deprotection of a diester protected at both termini with photolabile groups.
  • Wavelength-Controlled Orthogonal Photolysis of Protecting Groups
    作者:Aurélien Blanc、Christian G. Bochet
    DOI:10.1021/jo025837m
    日期:2002.8.1
    The selective control of a chemical process by the use of an electromagnetic wave has been a challenging goal for several decades. In this article, we describe for the first time the use of a monochromatic light beam to differentiate two different reactive centers. A direct application of this concept is found in the chemistry of protecting groups. Two different photolabile protecting groups were tuned to be responsive to a specific wavelength (e.g., 254 or 420 nm). Using derivatives of the 2-nitroveratryl fragment (such as 10, sensitive at 420 nm) and 3',5'-dimethoxybenzoin fragment (such as 4, sensitive at 254 nm), it was shown that energy transfer phenomena did not erode the selectivity. Both the inter- and the intramolecular cases were studied and showed selectivities within the synthetically useful range. Hence, we could replace the traditional chemical orthogonality by a chromatic orthogonality.
  • Isotope Effects in Photochemistry:  Application to Chromatic Orthogonality
    作者:Aurélien Blanc、Christian G. Bochet
    DOI:10.1021/ol070820h
    日期:2007.7.1
    The main challenge in developing new wavelength-specific photolabile protecting groups is the rigorous control of the photolysis rate. This rate is controlled by two factors: the chromophore absorbance and the reaction quantum yield. Fine-tuning the properties by changing substituents or structural features is difficult, because both factors are independently affected. By the use of the kinetic isotope effect, we could tune the quantum yield without altering the absorbance, and hence control the overall reaction rate. We exemplified this approach with chromatically orthogonally protected diesters.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐