Synthesis and Structure−Activity Relationships of cis-Tetrahydrophthalazinone/Pyridazinone Hybrids: A Novel Series of Potent Dual PDE3/PDE4 Inhibitory Agents
摘要:
In this study, the synthesis and in vitro and in vivo pharmacological investigations of a new series of phthalazinone/pyridazinone hybrids with both PDE3 and PDE4 inhibitory activities are described. These compounds combine the pharmacophores of recently discovered 4a,5,8,8a-tetrahydro-2H-phthalazin-1-one-type inhibitors of PDE4 and the well-known 2H-pyridazin-3-one-type PDE3 inhibitors such as the tetrahydrobenzimidazoles. Most of the synthesized compounds are pharmacologically spoken PDE3/PDE4 hybrids. All hybrids show potent PDE4 inhibitory activity (pIC(50) = 7.0-8.7), whereas the pIC(50) values for inhibition of PDE3 vary from 5.4 to 7.5. In general, analogues with a 5-methyl-4,5-dihydropyridazinone moiety exhibit the highest PDE3 inhibitory activities. The highest in vivo antiinflammatory activity is displayed by phthalazinones 43 and 44 showing, at a dose of 30 mumol/kg po, 46% inhibition of arachidonic acid (AA) induced mouse ear edema. No correlation was found between the in vitro PDE3 and/or PDE4 inhibitory activity and the in vivo antiinflammatory capacity after oral dosing.
Novel Selective PDE4 Inhibitors. 2. Synthesis and Structure−Activity Relationships of 4-Aryl-Substituted cis-Tetra- and cis-Hexahydrophthalazinones
摘要:
A series of 4-aryl-substituted cis-4a,5,8,8a-tetra- and cis-4a,5,6,7,8,8a-hexahydro-2H-phthalazin-1-ones with high inhibitory activity toward cAMP-specific phosphodiesterase (PDE4) was synthesized. To study structure-activity relationships various substituents were introduced to the 2-, 3-, and 4-positions of the 4-phenyl ring. Substitution at the 4-position of the phenyl ring was restricted to a methoxy group, probably due to unfavorable steric interactions of larger groups with the binding site. The introduction of many alkoxy substituents including distinct ring systems and functional groups was allowed to the 3-position. It was found that in general the cis-4a,5,8,8a-tetrahydro-2H-phthalazin-1-ones are more potent than their hexahydrophthalic counterparts, the best activity residing in (4-imidazol-1-yl-phenoxy)butoxy analogue 16o (pIC(50) = 9.7).