Preparation and characterization of tetrasubstituted zinc(II) phthalocyanines in which sulfur is not linked to the macrocycle are reported herein for the first time. Thioacetic acid S-[3-(3,4-dicyano-phenoxy)-propyl]ester (4) was synthesized in 55% yield from 4-nitrophthalonitrile and thioacetic acid S-(3-hydroxypropyl)ester (3). Tetrasusbtituted thiol-derivatized zinc(II) phthalocyanine 5 was obtained from 4 and zinc acetate in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene in butanol. Treatment of 5 with sodium methoxide afforded phthalocyanine 6. (C) 2009 Elsevier Ltd. All rights reserved.
A variety of medium‐sized cycloalkynes were efficiently synthesized by the double Nicholas reaction of cobalt complex and bis(hetero)substituted acyclic compound. The alkyne moiety within the ring has a unique bent structure and high reactivity toward cycloaddition reactions. Furthermore, preparation of multifunctionalized alkynes was achieved by embedding the cycloalkyne within a peptide chain.
A Novel Method for the Synthesis
of Thioacetates Using Benzyltriethylammonium Tetrathiomolybdate
and Acetic Anhydride
作者:Srinivasan Chandrasekaran、Nasir Baig. R.B.、Sai Sudhir. V.
DOI:10.1055/s-0028-1083517
日期:——
Herein we report a simple and efficient methodology for the synthesis of thioacetates using benzyltriethylammonium tetrathiomolybdate and acetic anhydride as the key reagents, starting from alkyl halides in a multistep, tandem reaction process. Its application in the synthesis of orthogonally protected cysteine and anomeric β-thioglycosides has also been demonstrated.
Oxidative Decarboxylation Enables Chemoselective, Racemization-Free Esterification: Coupling of α-Ketoacids and Alcohols Mediated by Hypervalent Iodine(III)
作者:Takeshi Nanjo、Natsuki Kato、Yoshiji Takemoto
DOI:10.1021/acs.orglett.8b02466
日期:2018.9.21
α-ketoacid could be converted into a reactive acylating agent by treatment with hypervalentiodine(III) species, and in so doing, we discovered a novel decarboxylative acylation of alcohols that affords a variety of esters in excellent yields. The esterification has been applied to a sterol bearing a free carboxylicacid and shows unique chemoselectivity. The procedure is racemization-free and operates
Flame-retardant aconitic acid-derived small molecules
申请人:International Business Machines Corporation
公开号:US10280287B2
公开(公告)日:2019-05-07
A flame-retardant aconitic acid-derived small molecule, a process for forming a flame-retardant polymer, and an article of manufacture comprising a material that contains a flame-retardant aconitic acid-derived small molecule are disclosed. The flame-retardant aconitic acid-derived small molecule can be synthesized from aconitic acid obtained from a bio-based source, and can have at least one phosphoryl or phosphonyl moiety with phenyl, allyl, or thioether substituents. The process for forming the flame-retardant polymer can include reacting an aconitic acid derivative with a flame-retardant phosphorus-based molecule to form a flame-retardant aconitic acid-derived small molecule, and combining the flame-retardant aconitic acid-derived small molecule with a polymer. The material in the article of manufacture can be a resin, adhesive, polymer, etc.
A flame-retardant vanillin-derived small molecule, a process for forming a flame-retardant polymer, and an article of manufacture comprising a material that contains the flame-retardant vanillin-derived small molecule are disclosed. The flame-retardant vanillin-derived small molecule can be synthesized from vanillin obtained from a bio-based source, and can have at least one phosphoryl or phosphonyl moiety with phenyl, allyl, or thioether substituents. The process for forming the flame-retardant polymer can include reacting a diol vanillin derivative and a flame-retardant phosphorus-based molecule to form the flame-retardant vanillin-derived small molecule, and binding the flame-retardant vanillin-derived small molecule to a polymer. The material in the article of manufacture can be flame-retardant, and contain the flame-retardant vanillin-derived small molecules. Examples of materials that can be in the article of manufacture can include resins, plastics, adhesives, polymers, etc.