在有机结构中加入分子开关对模拟生命系统复杂功能的刺激响应材料的化学设计非常感兴趣。暴露于可见光时转化为螺吡喃部分的部花青染料已被广泛研究,因为它们可以结合到水合共价网络中,当这种转化发生时,会排出水并引起体积收缩。我们在此报告了一种基于磺酸盐的水溶性光开关,与众所周知的系统相比,它在暴露于光子时会触发水凝胶的体积膨胀。反过来,在黑暗条件下以高度可逆的方式观察到收缩。通过系统的粗粒度模拟来预测共价网络中包含的光开关的新行为 s 化学结构。使用 pH 控制和在较低临界溶液温度下不同的聚合物结构,我们能够开发出具有高度可调体积膨胀的水凝胶。这里开发的系统的新分子功能导致在植物中观察到具有负趋光性的材料,并可以扩大水凝胶作为传感器、软机器人和执行器的潜在用途。
We show that the equilibrium of intramolecular spirocyclization of coumarin–hemicyanine hybrid fluorophores can be finely tuned by means of chemical modifications to develop activatable fluorescence probes for hydrolases with large Stokes shift.
ionization is reported. The formation of the photooxidation product occurs by attack of the flexible donor group (–CH2CH2OH) to the adjacent CC with 1O2 as the oxidant. The novel seven-membered ring sub-structure of the photooxidation product was inferred by HRMS, IR and 1H NMR spectroscopy. Additionally, acid released from solvent photolysis was found to affect the product formation and efficiency of the
恶唑啉(OXA)分子开关通过介质诱导的分子内电离的光氧化被报道。通过使用1 O 2作为氧化剂,挠性供体基团(–CH 2 CH 2 OH)攻击相邻的C C,可以形成光氧化产物。通过HRMS,IR和1 H NMR光谱推断出光氧化产物的新型七元环亚结构。另外,发现从溶剂光解中释放出的酸会影响产物的形成和光氧化的效率。
Novel Spiropyran Based Composition and Application Thereof as Security Tag
申请人:Council of Scientific and Industrial Research
公开号:US20180163053A1
公开(公告)日:2018-06-14
The present invention discloses the spiropyran compound of formula (I), process for preparation thereof and a composition comprising spiropyran compound of formula (I) on a support, wherein said support selected from polymers such as Poly (ethylene oxide), Polydimethylsiloxane (PDMS), Ethylene propylene diene monomer (EPDM).
Fast and Stable Photochromic Oxazines for Fluorescence Switching
作者:Erhan Deniz、Massimiliano Tomasulo、Janet Cusido、Salvatore Sortino、Françisco M. Raymo
DOI:10.1021/la201062h
日期:2011.10.4
dyad, however, has a slow switching speed and poor fatigue resistance. To improve both parameters, we developed a new family of photochromicswitches based on the photoinduced opening and thermal closing of an oxazine ring. These compounds switch back and forth between ring-closed and -open isomers on nanosecond–microsecond timescales and tolerate thousands of switching cycles with no sign of degradation