Stille Coupling Reactions in the Synthesis of Hypoxia-Selective 3-Alkyl-1,2,4-Benzotriazine 1,4-Dioxide Anticancer Agents
摘要:
The introduction of a 3-alkyl substituent is a key step in the synthesis of 1,2,4-benzotriazine 1,4-dioxide hypoxia-selective anticancer agents, such as SN29751. The Stille reaction of 3-chloro-1,2,4-benzotriazine 1-oxides ( BTOs) 5 was inhibited by the presence of electron donating substituents on the benzo ring, thus limiting the range of compounds available for SAR studies. The use of 3-iodo-BTOs 8 did not provide a significant improvement in the yields of 3-ethyl-BTOs 6. Microwave-assisted Stille coupling of chlorides 5 gave dramatically improved yields, which were consistently superior to those from the corresponding iodides 8. The application of microwave-assisted synthesis extended the range of substituted BTOs available for SAR studies and provided an efficient, scalable synthesis of the investigational anticancer agent, SN29751 ( 1).
Benzoazine mono-N-oxides and benzoazine 1,4 dioxides and compositions therefrom for the therapeutic use in cancer treatments
申请人:Auckland Uniservices Limited
公开号:EP1468688A2
公开(公告)日:2004-10-20
The present invention relates to a synergetistic composition comprising one or more benzoazine-mono-N-oxides, and one or more benzoazine 1,4 dioxides for use in cancer therapy.
The invention also provides a range of novel 1,2,4 benzoazine-mono-N-oxides and related analogues. These can be used as potentiators of the cytotoxicity of existing anticancer drugs and therapies for cancer treatment.
Stille Coupling Reactions in the Synthesis of Hypoxia-Selective 3-Alkyl-1,2,4-Benzotriazine 1,4-Dioxide Anticancer Agents
作者:Karin Pchalek、Michael P. Hay
DOI:10.1021/jo060986g
日期:2006.8.1
The introduction of a 3-alkyl substituent is a key step in the synthesis of 1,2,4-benzotriazine 1,4-dioxide hypoxia-selective anticancer agents, such as SN29751. The Stille reaction of 3-chloro-1,2,4-benzotriazine 1-oxides ( BTOs) 5 was inhibited by the presence of electron donating substituents on the benzo ring, thus limiting the range of compounds available for SAR studies. The use of 3-iodo-BTOs 8 did not provide a significant improvement in the yields of 3-ethyl-BTOs 6. Microwave-assisted Stille coupling of chlorides 5 gave dramatically improved yields, which were consistently superior to those from the corresponding iodides 8. The application of microwave-assisted synthesis extended the range of substituted BTOs available for SAR studies and provided an efficient, scalable synthesis of the investigational anticancer agent, SN29751 ( 1).