摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

*,S*)>-β-<<(1,1-dimethylethoxy)carbonyl>amino>-α-hydroxycyclohexanebutanoic acid, ethyl ester | 133485-22-0

中文名称
——
中文别名
——
英文名称
*,S*)>-β-<<(1,1-dimethylethoxy)carbonyl>amino>-α-hydroxycyclohexanebutanoic acid, ethyl ester
英文别名
ethyl (2R,3S)-3-[(tert-butoxycarbonyl)amino]-4-cyclohexyl-2-hydroxybutanoate;(R-(R*,S*))-β-{[(1,1-dimethylethoxy)carbonyl]amino}-α-hydroxycyclohexanebutanoic acid, ethyl ester;ethyl (2R,3S)-4-cyclohexyl-2-hydroxy-3-[(2-methylpropan-2-yl)oxycarbonylamino]butanoate
<R-(R<sup>*</sup>,S<sup>*</sup>)>-β-<<(1,1-dimethylethoxy)carbonyl>amino>-α-hydroxycyclohexanebutanoic acid, ethyl ester化学式
CAS
133485-22-0
化学式
C17H31NO5
mdl
——
分子量
329.437
InChiKey
RTHAHIORWUEVTL-UONOGXRCSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.7
  • 重原子数:
    23
  • 可旋转键数:
    9
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    84.9
  • 氢给体数:
    2
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Activated ketone based inhibitors of human renin
    摘要:
    Application of the concept of activated ketones to the design of novel and potent transition-state analog inhibitors of the aspartyl protease renin is described. Three different classes of peptidic activated ketones were synthesized: 1,1,1-trifluoromethyl ketones, alpha-keto esters, and alpha-diketones. The corresponding alcohols were also evaluated as renin inhibitors in each series. While the trifluoromethyl alcohol 12 (I50 = 4000 nM) was equipotent to the simple methyl alcohol 7 (I50 = 3200 nM), the structurally similar alpha-hydroxy esters (32 and 30, I50's = 5.3 and 4.7 nM, respectively) and alpha-hydroxy ketones (41 and 42, I50 = 23 and 15 nM, respectively) were 150-300-fold more active. The hydrating capability of the activated ketone functionality was important for intrinsic potency in the case of trifluoromethyl ketones, as illustrated by the significantly better activity of trifluoromethyl ketone 13 (I50 = 250 nM) compared to its alcohol analog 12 (I50 = 4000 nM). It was however unimportant for the alpha-keto ester (20 and 31, I50 = 15 and 4.1 nM, respectively) and alpha-diketone (43 and 44, I50 = 52 and 28 nM, respectively) based inhibitors, since their activity was essentially similar to that of the corresponding alcohols. These results collectively suggest that, whereas the trifluoromethyl ketones derive their renin inhibitory potency primarily from their ability to become hydrated, this is not a critical feature for the activity of alpha-dicarbonyl-based inhibitors. The alpha-keto ester and alpha-diketone based renin inhibitors benefit predominantly from the hydrophobic and/or H-bonding type binding interactions of the neighboring ester or acyl group itself, rather than the ability of this group to deactivate the adjacent ketone group and thereby make it susceptible to hydration.
    DOI:
    10.1021/jm00069a001
  • 作为产物:
    参考文献:
    名称:
    Activated ketone based inhibitors of human renin
    摘要:
    Application of the concept of activated ketones to the design of novel and potent transition-state analog inhibitors of the aspartyl protease renin is described. Three different classes of peptidic activated ketones were synthesized: 1,1,1-trifluoromethyl ketones, alpha-keto esters, and alpha-diketones. The corresponding alcohols were also evaluated as renin inhibitors in each series. While the trifluoromethyl alcohol 12 (I50 = 4000 nM) was equipotent to the simple methyl alcohol 7 (I50 = 3200 nM), the structurally similar alpha-hydroxy esters (32 and 30, I50's = 5.3 and 4.7 nM, respectively) and alpha-hydroxy ketones (41 and 42, I50 = 23 and 15 nM, respectively) were 150-300-fold more active. The hydrating capability of the activated ketone functionality was important for intrinsic potency in the case of trifluoromethyl ketones, as illustrated by the significantly better activity of trifluoromethyl ketone 13 (I50 = 250 nM) compared to its alcohol analog 12 (I50 = 4000 nM). It was however unimportant for the alpha-keto ester (20 and 31, I50 = 15 and 4.1 nM, respectively) and alpha-diketone (43 and 44, I50 = 52 and 28 nM, respectively) based inhibitors, since their activity was essentially similar to that of the corresponding alcohols. These results collectively suggest that, whereas the trifluoromethyl ketones derive their renin inhibitory potency primarily from their ability to become hydrated, this is not a critical feature for the activity of alpha-dicarbonyl-based inhibitors. The alpha-keto ester and alpha-diketone based renin inhibitors benefit predominantly from the hydrophobic and/or H-bonding type binding interactions of the neighboring ester or acyl group itself, rather than the ability of this group to deactivate the adjacent ketone group and thereby make it susceptible to hydration.
    DOI:
    10.1021/jm00069a001
点击查看最新优质反应信息

文献信息

  • A Catalytic Asymmetric Synthesis of Cyclohexylnorstatine
    作者:Mireia Pastó、Patrícia Castejón、Albert Moyano、Miquel A. Pericàs、Antoni Riera
    DOI:10.1021/jo960351p
    日期:1996.1.1
  • Activated ketone based inhibitors of human renin
    作者:Dinesh V. Patel、Katherine Rielly-Gauvin、Denis E. Ryono、Charles A. Free、Sandra A. Smith、Edward W. Petrillo
    DOI:10.1021/jm00069a001
    日期:1993.8
    Application of the concept of activated ketones to the design of novel and potent transition-state analog inhibitors of the aspartyl protease renin is described. Three different classes of peptidic activated ketones were synthesized: 1,1,1-trifluoromethyl ketones, alpha-keto esters, and alpha-diketones. The corresponding alcohols were also evaluated as renin inhibitors in each series. While the trifluoromethyl alcohol 12 (I50 = 4000 nM) was equipotent to the simple methyl alcohol 7 (I50 = 3200 nM), the structurally similar alpha-hydroxy esters (32 and 30, I50's = 5.3 and 4.7 nM, respectively) and alpha-hydroxy ketones (41 and 42, I50 = 23 and 15 nM, respectively) were 150-300-fold more active. The hydrating capability of the activated ketone functionality was important for intrinsic potency in the case of trifluoromethyl ketones, as illustrated by the significantly better activity of trifluoromethyl ketone 13 (I50 = 250 nM) compared to its alcohol analog 12 (I50 = 4000 nM). It was however unimportant for the alpha-keto ester (20 and 31, I50 = 15 and 4.1 nM, respectively) and alpha-diketone (43 and 44, I50 = 52 and 28 nM, respectively) based inhibitors, since their activity was essentially similar to that of the corresponding alcohols. These results collectively suggest that, whereas the trifluoromethyl ketones derive their renin inhibitory potency primarily from their ability to become hydrated, this is not a critical feature for the activity of alpha-dicarbonyl-based inhibitors. The alpha-keto ester and alpha-diketone based renin inhibitors benefit predominantly from the hydrophobic and/or H-bonding type binding interactions of the neighboring ester or acyl group itself, rather than the ability of this group to deactivate the adjacent ketone group and thereby make it susceptible to hydration.
查看更多