A green-emitting Cu complex for oxygen-sensing purpose: Synthesis, characterization and photophysical features
摘要:
In the present work, a green-emitting Cu(I) complex [Cu(BT-Et)(POP)]BF4 was synthesized and fully characterized, where BT-Et = 4-(1-ethyl-1H-benzo[d]imidazol-2-yl)thiazole, POP = bis(2-(diphenylphosphanyl)phenyl) ether, respectively. An ethyl group was connected onto the diamine ligand to breach pi-pi attraction within solid [Cu(BT-Et)(POP)]BF4, favoring O-2 molecule attack and sensitivity improvement. Its molecular identity was confirmed by single crystal analysis and theoretical calculation. [Cu(BT-Et)(POP)]BF4 emitted long-lived green emission peaking at 521 nm upon photoexcitation which was vulnerable towards O-2 molecule, making itself a potential oxygen sensing material. [Cu(BT-Et)(POP)]BF4 was then doped into a silica supporting matrix MCM-41. The resulting composite samples showed sensing behavior towards O-2 molecule, with short response time of 10 s and sensitivity of 5.56. (C) 2015 Elsevier B.V. All rights reserved.
A green-emitting Cu complex for oxygen-sensing purpose: Synthesis, characterization and photophysical features
摘要:
In the present work, a green-emitting Cu(I) complex [Cu(BT-Et)(POP)]BF4 was synthesized and fully characterized, where BT-Et = 4-(1-ethyl-1H-benzo[d]imidazol-2-yl)thiazole, POP = bis(2-(diphenylphosphanyl)phenyl) ether, respectively. An ethyl group was connected onto the diamine ligand to breach pi-pi attraction within solid [Cu(BT-Et)(POP)]BF4, favoring O-2 molecule attack and sensitivity improvement. Its molecular identity was confirmed by single crystal analysis and theoretical calculation. [Cu(BT-Et)(POP)]BF4 emitted long-lived green emission peaking at 521 nm upon photoexcitation which was vulnerable towards O-2 molecule, making itself a potential oxygen sensing material. [Cu(BT-Et)(POP)]BF4 was then doped into a silica supporting matrix MCM-41. The resulting composite samples showed sensing behavior towards O-2 molecule, with short response time of 10 s and sensitivity of 5.56. (C) 2015 Elsevier B.V. All rights reserved.
LIGAND EXCHANGE THERMOCHROMIC SYSTEMS AND HIGH E LIGANDS FOR SAME
申请人:Byker J. Harlan
公开号:US20080105851A1
公开(公告)日:2008-05-08
Ligand exchange of thermochromic, LETC, systems exhibiting a reversible change in absorbance of electromagnetic radiation as the temperature of the system is reversibly changed are described. The described LETC systems include one or more than one transition metal ion, which experiences thermally induced changes in the nature of the complexation or coordination around the transition metal ion(s) and, thereby, the system changes its ability to absorb electromagnetic radiation as the temperature changes. In accordance with certain aspects of the present invention, a thermochromic system is disclosed comprising a transition metal ion and a ligand wherein the ligand comprises a nitrogen-containing five or six membered heterocyclic compound that coordinates through the nitrogen atom to the transition metal ion in a HεMLC formed between the transition metal ion and the ligand. In accordance with other aspects of the present invention, thermochromic systems are disclosed comprising a transition metal ion with particularly useful ligands, such as phosphine compounds, tridentate ligands that coordinate through three nitrogen atoms, bidentate ligands, or ortho hindered pyridine monodentate ligands.
LIGAND EXCHANGE THERMOCHROMIC SYSTEMS CONTAINING EXCHANGE METALS
申请人:Byker J. Harlan
公开号:US20080106781A1
公开(公告)日:2008-05-08
Ligand exchange of thermochromic, LETC, systems exhibiting a reversible change in absorbance of electromagnetic radiation as the temperature of the system is reversibly changed are described. The described LETC systems include one or more than one transition metal ion, which experiences thermally induced changes in the nature of the complexation or coordination around the transition metal ion(s) and, thereby, the system changes its ability to absorb electromagnetic radiation as the temperature changes. In accordance with one aspect of the present invention, a thermochromic system is disclosed comprising a first metal ion and a second metal ion and at least one ligand that complexes with the first metal ion to form a LεMLC and complexes with the second metal ion to form a HεMLC wherein an increase in temperature of the system results in a reversible net increase in its ability to absorb light energy in the 400 nm to 1400 nm range due to the ligand transferring from the first metal ion to the second metal ion.
Ligand exchange of thermochromic, LETC, systems exhibiting a reversible change in absorbance of electromagnetic radiation as the temperature of the system is reversibly changed are described. The described LETC systems include one or more than one transition metal ion, which experiences thermally induced changes in the nature of the complexation or coordination around the transition metal ion(s) and, thereby, the system changes its ability to absorb electromagnetic radiation as the temperature changes.
Ligand exchange thermochromic systems containing exchange metals
申请人:Pleotint, L.L.C.
公开号:US07538931B2
公开(公告)日:2009-05-26
Ligand exchange of thermochromic, LETC, systems exhibiting a reversible change in absorbance of electromagnetic radiation as the temperature of the system is reversibly changed are described. The described LETC systems include one or more than one transition metal ion, which experiences thermally induced changes in the nature of the complexation or coordination around the transition metal ion(s) and, thereby, the system changes its ability to absorb electromagnetic radiation as the temperature changes.
In accordance with one aspect of the present invention, a thermochromic system is disclosed comprising a first metal ion and a second metal ion and at least one ligand that complexes with the first metal ion to form a LεMLC and complexes with the second metal ion to form a HεMLC wherein an increase in temperature of the system results in a reversible net increase in its ability to absorb light energy in the 400 nm to 1400 nm range due to the ligand transferring from the first metal ion to the second metal ion.
Ligand exchange thermochromic systems and high ε ligands for same
申请人:Pleotint, L.L.C.
公开号:US08182718B2
公开(公告)日:2012-05-22
Ligand exchange of thermochromic, LETC, systems exhibiting a reversible change in absorbance of electromagnetic radiation as the temperature of the system is reversibly changed are described. The described LETC systems include one or more than one transition metal ion, which experiences thermally induced changes in the nature of the complexation or coordination around the transition metal ion(s) and, thereby, the system changes its ability to absorb electromagnetic radiation as the temperature changes.
In accordance with certain aspects of the present invention, a thermochromic system is disclosed comprising a transition metal ion and a ligand wherein the ligand comprises a nitrogen-containing five or six membered heterocyclic compound that coordinates through the nitrogen atom to the transition metal ion in a HεMLC formed between the transition metal ion and the ligand.
In accordance with other aspects of the present invention, thermochromic systems are disclosed comprising a transition metal ion with particularly useful ligands, such as phosphine compounds, tridentate ligands that coordinate through three nitrogen atoms, bidentate ligands, or ortho hindered pyridine monodentate ligands.