通过萃取中性络合物Ru(CO)5和Ru(CO )的己烷溶液原位制备阳离子络合物HRu(CO)5 +和HRu(CO)4 L +(L P(C 6 H 5)3)。)4 L,含浓H 2 SO 4。的13 C NMR谱显示两个阳离子是对NMR的时间尺度nonfluxional在25℃和HRU(CO)4大号+物种为具有顺式构型。
作者:Michael I. Bruce、Janis G. Matisons、Brian K. Nicholson
DOI:10.1016/0022-328x(83)85174-2
日期:1983.5
and new derivatives of Ru3(CO)12 and H4Ru4(CO)12 by substitution reactions initiated by sodium diphenylketyl are described. The range of ligands studied includes isocyanides, tertiaryphosphines and phosphites, tertiaryarsines and SbPh3. The reactions are characterised by high degrees of specificity and conversion: under mild conditions up to four ligands can be introduced. Comparisons with the corresponding
描述了由二苯基酮基钠引发的取代反应合成的六十多种Ru 3(CO)12和H 4 Ru 4(CO)12已知新衍生物。研究的配体范围包括异氰化物,叔膦和亚磷酸盐,叔,和SbPh 3。反应的特征在于高度的特异性和转化率:在温和的条件下,最多可以引入四个配体。在几种情况下,与相应的热诱导反应进行了比较。尽管可能必须考虑配体的相对路易斯碱强度,但是该反应提供了到达羰基簇的混合配体衍生物的途径。简要讨论了这些反应的可能机理,以及Ru 3(CO)12-n L n配合物的IRν(CO)光谱。
Catalytic Hydrogen Generation from the Hydrolysis of Silanes by Ruthenium Complexes
作者:Sze Tat Tan、Jun Wei Kee、Wai Yip Fan
DOI:10.1021/om200256h
日期:2011.8.8
Dimeric Ru(II) complexes Ru2(CO)4L2X4 (L = CO or PPh3; X = Cl or Br) have been found to catalyze the hydrolysis of silanes to produce hydrogen gas and silanols with turnover numbers in excess of 104 at room temperature. Deuteration and mass spectrometric studies have established that the hydrogen gas originates from one hydrogen atom from water and the other from silane. Ruthenium hydride intermediates
已发现二聚Ru(II)络合物Ru 2(CO)4 L 2 X 4(L = CO或PPh 3; X = Cl或Br)催化硅烷的水解,产生氢气和硅烷醇,其周转数过多在室温下为10 4。氘化和质谱研究已确定,氢气源自一个氢原子,而另一个氢原子来自硅烷。在反应的早期阶段,已在NMR光谱中检测到氢化钌中间体,而更稳定的配合物如Ru(CO)2(PPh 3)(THF)Br 2和Ru(CO)2(PPh )的FTIR光谱3)催化完成后已记录2(H)Br。根据实验数据,提出了一种机制来解释钌催化的硅烷水解。
Double oxidative addition of CH bonds on a triruthenium cluster complex; synthesis and characterization of Ru3{μ-H2,η2,μ3-C(OEt)=C(H)}(CO)9 and Ru3{μ-H2,η2,μ3-C(OEt)N(Me)C(CH)}(CO)9
作者:Craig M. Jensen、Herbert D. Kaesz
DOI:10.1016/0022-328x(87)80283-8
日期:1987.8
Titration of Ru3(μ-H,μ-O=C(CH3)}(CO)10 (1) with LiCH3 in diethyl ether at − 30°C leads to its instantaneous conversion into [Li][Ru3η2-C(CO)CH3}μ-H,μ-O=C(CH3)}(CO)9]. Alkylation with C2H5OSO2CF3 at 25°C leads after 48 h to Ru3μ-H2,η2,μ3-C(OEt)=C(H)}(CO)9 (3) in 80% yield; acetaldehyde is obtained as a by-product. Use of LiCD3 in the first step of this sequence gives unlabeled acetaldehyde and the
Preparation, mechanism of formation, structure, and reactions of η-allyl complexes of ruthenium(<scp>II</scp>)
作者:Christopher F. J. Barnard、J. Anthony Daniels、Philip R. Holland、Roger J. Mawby
DOI:10.1039/dt9800002418
日期:——
Reaction of either of two isomers of [Ru(CO)2Cl2(PMe2Ph)2] or either of two isomers of [Ru(CO)Cl2(PMe2Ph)2}2] with SnBu3(C3H5) yields a single isomer of [Ru(CO)Cl(η-C3H5)(PMe2Ph)2]. A mechanism involving the intermediate formation of the five-co-ordinate species [Ru(CO)Cl2(PMe2Ph)2] and [Ru(CO)Cl(σ-C3H5)(PMe2Ph)2] is proposed for the reactions. Treatment of complexes [Ru(Co)2Cl2L}2](L = phosphorus
作者:B. F. G. JOHNSON、R. D. JOHNSTON、P. L. JOSTY、J. LEWIS、I. G. WILLIAMS
DOI:10.1038/213901b0
日期:1967.3
that of tri-iron dodecacarbonyl can be expected, but whereas reactions of the iron cluster normally lead to cleavage of the trimeric unit, the ruthenium analogue appears to give stable trinuclear species. This may be correlated with an increase in the stability of metal-metal bonds on going down the transition metal triad2. This communication summarizes some of the reactions carried out on ruthenium carbonyl