摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-nitrophenyl α-D-galactopyranosyl-(1->6)-α-D-galactopyranoside | 187394-28-1

中文名称
——
中文别名
——
英文名称
4-nitrophenyl α-D-galactopyranosyl-(1->6)-α-D-galactopyranoside
英文别名
Gal(a1-6)Gal(a)-O-Ph(4-NO2);(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-[[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(4-nitrophenoxy)oxan-2-yl]methoxy]oxane-3,4,5-triol
4-nitrophenyl α-D-galactopyranosyl-(1->6)-α-D-galactopyranoside化学式
CAS
187394-28-1
化学式
C18H25NO13
mdl
——
分子量
463.395
InChiKey
ISCYUJSLZREARS-VUBBGHQQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.6
  • 重原子数:
    32
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    224
  • 氢给体数:
    7
  • 氢受体数:
    13

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    4-硝基苯基-α-D-吡喃半乳糖苷 在 recombinant Aspergillus nidulans FGSC GH36 α-galactosidase 作用下, 反应 1.0h, 以74%的产率得到4-nitrophenyl α-D-galactopyranosyl-(1->6)-α-D-galactopyranoside
    参考文献:
    名称:
    糖苷水解酶家族36的构巢曲霉α-半乳糖苷酶通过转糖基化催化α-半乳糖低聚糖的形成
    摘要:
    来自构巢曲霉(AglC)的α-半乳糖苷酶属于系统发育簇,包含糖苷水解酶家族36(GH36)的真核α-半乳糖苷酶和α-半乳糖寡糖合酶。重组AglC在大肠杆菌中以His-tag融合形式高产量(0.65 g·L -1培养)产生,催化40 m m 4-硝基苯酚α- d-吡喃半乳糖苷具有α-(1→6)区域选择性的高效转糖基化作用,蜜二糖棉子糖或,产生4-硝基苯酚α-收率的37-74%d -Gal p - (1→6) - d -Gal p,α- d -Gal p - (1→6)-α- d-Gal p - (1→6) - d -Glc p和α- d -Gal p - (1→6)-α- d -Gal p - (1→6) - d -Glc p - (α1→β2 )-d- Fru f(水苏糖)。此外,在10个候选单糖受体(400 m m)和供体4-硝基苯酚α- d-吡喃半乳糖苷(40 m m)中,还获得了由半
    DOI:
    10.1111/j.1742-4658.2010.07763.x
点击查看最新优质反应信息

文献信息

  • α-Galactobiosyl units: thermodynamics and kinetics of their formation by transglycosylations catalysed by the GH36 α-galactosidase from Thermotoga maritima
    作者:Anna S. Borisova、Dina R. Ivanen、Kirill S. Bobrov、Elena V. Eneyskaya、Georgy N. Rychkov、Mats Sandgren、Anna A. Kulminskaya、Michael L. Sinnott、Konstantin A. Shabalin
    DOI:10.1016/j.carres.2014.11.003
    日期:2015.1
    a limiting factor for application of the enzyme in the directed synthesis of oligogalactosides. However, this property can be used as a convenient tool in studies of thermodynamics of a glycosidic bond. Here, a novel approach to energy difference estimation is suggested. Both transglycosylation and hydrolysis of three types of galactosidic linkages were investigated using total kinetics of formation
    来自滨海嗜热菌(TmGal36A)的α-半乳糖苷酶的广泛区域选择性是该酶在寡半乳糖苷的定向合成中应用的限制因素。但是,该性质可以用作研究糖苷键热力学的方便工具。在此,提出了一种新的能量差估计方法。使用由海藻T.36(一种保留性的外泌作用糖苷水解酶)的单体糖苷水解酶家族36α-半乳糖苷酶催化的pNP-半乳糖苷的形成和水解的总动力学,研究了三种类型的半乳糖苷键的转糖基化和水解。我们估计了1,2-和1,3-键之间的过渡态自由能差(DeltaDeltaG(double dagger)0值等于5.34 +/- 0.85 kJ / mol)和1,6-键和1,之间 在由TmGal36A催化的反应过程中,pNP-半乳糖苷中有3个键(DeltaDeltaG(双匕首)0 = 1.46 +/- 0.23 kJ / mol)。利用自由能差形成和水解糖苷键(DeltaDeltaG(双匕首)F-DeltaDeltaG(双匕首)H),我们发现1
  • Enzymatic properties of α-d-galactosidase from Trichoderma reesei
    作者:Andrew N. Savel'ev、Farid M. Ibatyllin、Elena V. Eneyskaya、Anatoly M. Kachurin、Kirill N. Neustroev
    DOI:10.1016/s0008-6215(96)00248-0
    日期:1996.12
    compounds have been obtained. The inhibiting properties of the competitive inhibitors of d -galactose, 1,5-anhydro- d -galactitol, and 2-deoxygalactose have been compared, and reasons for differences in KI values between these compounds have been discussed. It has been shown that α- d -galactosidase exhibits transglycosylating activity; the main product of transglycosylation in the reaction with PNPG is p-nitrophenyl
    摘要天然和合成底物[甲基纤维素,棉子糖,水苏糖,甲基α-d-吡喃半乳糖苷和对硝基苯基α-d-吡喃半乳糖苷(PNPG)]的水解动力学,由α-d-半乳糖苷酶催化。真菌里氏木霉,已被研究。已经合成了许多作为α-d-半乳糖苷酶的竞争性抑制剂的N-酰基-α-d-吡喃半乳糖苷胺,并且已经获得了这些化合物的KI值。比较了d-半乳糖,1,5-脱水d-半乳糖醇和2-脱氧半乳糖的竞争性抑制剂的抑制性能,并讨论了这些化合物之间KI值差异的原因。已经显示出α-d-半乳糖苷酶表现出转糖基化活性。与PNPG反应的转糖基化的主要产物是对硝基苯基6-O-α-d-吡喃半乳糖苷-α-d-吡喃半乳糖苷。已显示在底物存在下的水解抑制与底物转糖基化相关。稳态动力学的数据以及通过停流方法获得的稳态前的动力学数据表明,在反应中形成了中间半乳糖基-酶复合物,在所研究的过程中特别重要。提出了描述所获得的实验数据的最小动力学方案。稳态动力学
  • Semi-rational approach for converting a GH36 α-glycosidase into an α-transglycosidase
    作者:David Teze、Franck Daligault、Vincent Ferrières、Yves-Henri Sanejouand、Charles Tellier
    DOI:10.1093/glycob/cwu124
    日期:2015.4
    A large number of retaining glycosidases catalyze both hydrolysis and transglycosylation reactions. In order to use them as catalysts for oligosaccharide synthesis, the balance between these two competing reactions has to be shifted toward transglycosylation. We previously designed a semi-rational approach to convert the Thermus thermophilus β-glycosidases into transglycosidases by mutating highly conserved residues located around the −1 subsite. In an attempt to verify that this strategy could be a generic approach to turn glycosidases into transglycosidases, Geobacillus stearothermophilus α-galactosidase (AgaB) was selected in order to obtain α-transgalactosidases. This is of particular interest as, to date, there are no efficient α-galactosynthases, despite the considerable importance of α-galactooligosaccharides. Thus, by site-directed mutagenesis on 14 AgaB residues, 26 single mutants and 22 double mutants were created and screened, of which 11 single mutants and 6 double mutants exhibited improved synthetic activity, producing 4-nitrophenyl α-d-galactopyranosyl-(1,6)-α-d-galactopyranoside in 26–57% yields against only 22% when native AgaB was used. It is interesting to note that the best variant was obtained by mutating a second-shell residue, with no direct interaction with the substrate or a catalytic amino acid. As this approach has proved to be efficient with both α- and β-glycosidases, it is a promising route to convert retaining glycosidases into transglycosidases.
    许多保留糖苷酶既能催化水解反应,也能催化转糖基化反应。为了将它们用作寡糖合成的催化剂,必须将这两种竞争反应之间的平衡转向转糖基化反应。此前,我们设计了一种半合理的方法,通过突变位于-1位点周围的高度保守残基,将嗜热菌β-糖苷酶转化为转糖苷酶。为了验证这种策略是否可以作为将糖苷酶转化为转糖苷酶的通用方法,我们选择了嗜热脂肪芽孢杆菌 α-半乳糖苷酶(AgaB),以获得 α-转半乳糖苷酶。这一点特别令人感兴趣,因为尽管α-半乳寡糖相当重要,但迄今为止还没有高效的α-半乳合成酶。因此,通过对 14 个 AgaB 残基进行定点突变,产生并筛选出了 26 个单突变体和 22 个双突变体,其中 11 个单突变体和 6 个双突变体的合成活性有所提高,产生 4-硝基苯基 α-d-吡喃半乳糖苷-(1,6)-α-d-吡喃半乳糖苷的产量为 26-57%,而使用原生 AgaB 时仅为 22%。值得注意的是,最佳变体是通过突变一个与底物或催化氨基酸没有直接相互作用的第二壳残基获得的。事实证明,这种方法对α-和β-糖苷酶都很有效,因此是将保留糖苷酶转化为转糖苷酶的一条很有前景的途径。
  • Characterization of Properties and Transglycosylation Abilities of Recombinant α-Galactosidase from Cold-Adapted Marine Bacterium Pseudoalteromonas KMM 701 and Its C494N and D451A Mutants
    作者:Irina Bakunina、Lubov Slepchenko、Stanislav Anastyuk、Vladimir Isakov、Galina Likhatskaya、Natalya Kim、Liudmila Tekutyeva、Oksana Son、Larissa Balabanova
    DOI:10.3390/md16100349
    日期:——
    (α-PsGal) from the cold-adapted marine bacterium Pseudoalteromonas sp. KMM 701, and its mutants D451A and C494N, were studied in terms of their structural, physicochemical, and catalytic properties. Homology models of the three-dimensional α-PsGal structure, its active center, and complexes with D-galactose were constructed for identification of functionally important amino acid residues in the active site
    一种新的野生型重组冷活性α-d-半乳糖苷酶(α-PsGal),来自适应寒冷的海洋细菌Pseudoalteromonas sp。研究了KMM 701及其突变体D451A和C494N的结构,物理化学和催化特性。建立了三维α-PsGal结构,其活性中心以及与D-半乳糖的复合物的同源性模型,以利用酶的α-半乳糖苷酶的晶体结构鉴定酶活性位点中功能上重要的氨基酸残基。嗜酸乳杆菌为模板。野生α-PsGal和突变体C494N的圆二色性光谱大致相同。C494N突变降低了保留酶与标准对硝基苯基-α-吡喃半乳糖苷(pNP-α-Gal)亲和力的效率。薄层色谱法,使用基质辅助激光解吸/电离质谱法和核磁共振波谱法鉴定反应混合物中的糖基转移产物。α-PsGal具有狭窄的受体特异性。果糖,木糖,岩藻糖和葡萄糖在转糖基化反应中作为受体没有活性。α-PsGal由蜜三糖以及-α(1→6)-和-α(1→3)连接的对硝基苯基-合成
  • Preparation of α-galactooligoglycosides by cell walls from Cryptococcus laurentii using a novel α-galactosyl donor
    作者:Vladimír Mastihuba、Mária Mastihubová、Miroslav Belák、Jana Dudíková、Elena Karnišová Potocká、Ladislav Petruš
    DOI:10.1016/j.tetasy.2017.07.007
    日期:2017.8
    The cell walls of an acapsular strain of the yeast Cryptococcus laurentii catalyze the regioselective formation of alpha-galactooligosaccharides through self-condensation of 4-nitrophenyl alpha-D-galactopyranoside and of a novel activated ot-galactosyl donor 2,2,2-trifluoroethyl of-o-galactopyranoside. The latter substance can be easily prepared by several methods and is highly soluble in water and therefore can be used in higher initial concentrations suppressing secondary product hydrolysis. The preparative reaction catalyzed by cell walls provided 17.4% and 2% of corresponding 2,2,2-trifluoroethyl galactobioside and galactotrioside, respectively, while the reaction with 4-nitrophenyl alpha-D-galactopyranoside provided the corresponding 4-nitrophenyl galactobioside and galactotrioside in 6.6 and 2.5% yields, respectively. The reactions proceeded with strict alpha-(1 -> 6)-regioselectivity. (C) 2017 Elsevier Ltd. All rights reserved.
查看更多