[EN] PROCESS FOR MANUFACTURING A CYCLIC UREA ADDUCT OF AN ETHYLENEAMINE COMPOUND<br/>[FR] PROCÉDÉ DE FABRICATION DE PRODUIT D'ADDITION D'URÉE CYCLIQUE D'UN COMPOSÉ ÉTHYLÈNEAMINE
申请人:AKZO NOBEL CHEMICALS INT BV
公开号:WO2019030191A1
公开(公告)日:2019-02-14
The invention pertains to a process for manufacturing a cyclic urea adduct of an ethyleneamine compound, the ethyleneamine compound having a linear -NH-CH2-CH2-NH- group, the process comprising the steps of - in an absorption step contacting a liquid medium comprising an ethyleneamine compound having a linear -NH-CH2-CH2-NH- group with a CO2-containing gas stream at a pressure of 1 -20 bara, resulting in the formation of a liquid medium into which CO2 has been absorbed, - bringing the liquid medium to cyclic urea formation conditions, and in an urea formation step forming cyclic urea adduct of the ethyleneamine compound, urea formation conditions including a temperature of at least 120°C, wherein the total pressure at the end of the urea formation step is at most 20 bara, wherein the temperature in the absorption step is lower than the temperature in the urea formation step. It has been found that the process according to the invention makes it possible to obtain cyclic urea adducts in an efficient manner in the absence of metal-containing catalysts and to perform the process under relatively mild conditions, in particular relatively low pressure. More specifically, by separating the CO2 absorption step from the urea formation step, the CO2 absorption step can be carried out at relatively low temperatures and pressures. And because the CO2 is already present in the system at the beginning of the urea formation step, the pressure in the urea formation step does not need to be high.
该发明涉及一种制造具有线性-NH-CH2-CH2-NH-基团的乙二胺化合物的环式脲加合物的工艺,该工艺包括以下步骤:-在吸收步骤中,将包含具有线性-NH-CH2-CH2-NH-基团的乙二胺化合物的液体介质与含CO2气流在1-20 bara的压力下接触,导致形成已吸收CO2的液体介质,-将液体介质带到环式脲形成条件,并在脲形成步骤中形成乙二胺化合物的环式脲加合物,脲形成条件包括至少120°C的温度,在脲形成步骤结束时的总压力最多为20 bara,在吸收步骤中的温度低于脲形成步骤中的温度。发现该发明的工艺使得在无金属催化剂的情况下以相对温和的条件,特别是相对低压下有效地获得环式脲加合物成为可能。更具体地,通过将CO2吸收步骤与脲形成步骤分离,CO2吸收步骤可以在相对低温和压力下进行。由于在脲形成步骤开始时系统中已经存在CO2,因此脲形成步骤中的压力不需要很高。