A simple and practical method for α-ketoamide synthesis via a decarboxylative strategy of isocyanates with α-oxocarboxylic acids is described. The reaction proceeds at room temperature under mild conditions without an oxidant or an additive, showing good substrate scope and functional compatibility. Moreover, the applicability of this method was further demonstrated by the synthesis of various bioactive
Abstract A selective protocol for the synthesis of either α -ketoamides or quinoxaline derivatives under the same reaction conditions has been achieved simply by varying substitution number of amino-groups. The method features metal-free, room temperature and broad substrate scopes as well as no extra oxidant. This process applies to various substituent groups and gives products in moderate to good
A catalyst‐ and additive‐free chemoselective transfer hydrogenation of α‐keto amides to α‐hydroxy amides is easily achieved by using sodium formate as a hydrogen source. Control experiments suggest that the NH group of α‐keto amides is crucial for the chemoselective reduction through the formation of hydrogen bonds.
Development of C–N coupling processes is fundamentally important and challenging for the synthesis of biologically active molecules and drugs. Herein, we report a highly atom efficient green process for the synthesis of α-ketoamides via visible-light induced copper(I) chloride catalysed direct oxidative Csp–N coupling reactions using commercially available alkynes and anilines at room temperature without
Synthesis of 1,2-Fused Bicyclic Imidazolidin-4-ones by Redox-Neutral Cyclization Reaction of Cyclic Amines and α-Ketoamides
作者:Jiashou Wu、Yi Liu、Zhengneng Jin、Huajiang Jiang
DOI:10.1055/s-0036-1591951
日期:2018.5
A redox annulation reaction of cyclic amines and α-ketoamides was developed. A variety of 1,2-fused bicyclic imidazolidin-4-ones were synthesized in moderate to good yields from cyclic amines by redox-neutral α-C–H functionalization.