摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

yttrium(III) trifluoroacetate

中文名称
——
中文别名
——
英文名称
yttrium(III) trifluoroacetate
英文别名
yttrium trifluoroacetate;Y(trifluoroacetate)3;Y(TFA)3;Y(trifluoroacetate)3
yttrium(III) trifluoroacetate化学式
CAS
——
化学式
3C2F3O2*Y
mdl
——
分子量
427.954
InChiKey
JMTWFNKVXUXNQB-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.7
  • 重原子数:
    8.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    40.13
  • 氢给体数:
    0.0
  • 氢受体数:
    2.0

反应信息

  • 作为反应物:
    描述:
    yttrium(III) trifluoroacetate 以 neat (no solvent) 为溶剂, 生成 yttrium(III) oxide
    参考文献:
    名称:
    Eloussifi, Hichem; Farjas, Jordi; Roura, Pere, Journal of Thermal Analysis and Calorimetry, 2012, vol. 108, p. 589 - 596
    摘要:
    DOI:
  • 作为产物:
    描述:
    yttrium(III) acetate 、 三氟乙酸 生成 yttrium(III) trifluoroacetate
    参考文献:
    名称:
    Facile and efficient preparation of high-performance REBa2Cu3O7−x superconducting films through a novel fluorinated solution route
    摘要:
    REBa2Cu3O7-x (RE = Y, Gd, Yb) superconducting films were prepared through an advanced low-fluorine solution route. The precursor solution was prepared using fluorine-free copper and barium salts, and fluorine-contained rare earth salts. Metal fluorides and oxides were formed as intermediate phases in the precursor films, which were pyrolyzed at 400-500 degrees C. After reacting with water gases during the firing process at 800 C, the fluorides were transformed into the oxides, finally leading to the formation of superconducting REBa2Cu3O7-x,, (REBCO) phases. Due to the low-content of fluorine in the solution, high-rate production of REBCO films could be realized using this low-fluorine solution method. All the REBCO films had a good out-of-plane texture with a high critical transition temperature of more than 90 K and a critical current density of more than 2 MA/cm(2). (C) 2013 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.jfluchem.2013.01.022
  • 作为试剂:
    描述:
    环己酮肉桂醛yttrium(III) trifluoroacetate 作用下, 反应 7.0h, 以98%的产率得到2,6-bis(3-phenylallylidene)cyclohexanone
    参考文献:
    名称:
    Y(TFA)3催化的α,α'-双(取代亚苄基)环烷酮的简便合成
    摘要:
    在无溶剂条件下,在Y(TFA)3的存在下,芳香醛与环状酮进行交叉醇醛缩合,以令人满意的产率得到相应的α,α'-双(取代的亚苄基)环烷酮。此外,可以方便地回收催化剂,并以相当的收率将其在反应中多次使用。
    DOI:
    10.1080/15533174.2011.613882
点击查看最新优质反应信息

文献信息

  • Effects of heat-treatment conditions on microstructure of Y123 films deposited by TFA-MOD method
    作者:J. Shibata、Y. Tokunaga、R. Teranishi、H. Fuji、T. Honjo、T. Izumi、Y. Shiohara
    DOI:10.1016/s0921-4534(03)01151-1
    日期:2003.10
    spectroscopy. In the Y123 precursor film prepared by heating at the rate of 0.2 °C/min in the temperature range from 200 to 250 °C, Cu was distributed uniformly. On the other hand, in the precursor film prepared by heat-treating at the rate of 5 °C/min from 200 to 250 °C, Cu was found to be segregated in the vicinity of the surface of the film. This Cu segregation in the precursor film might cause the differences
    摘要 在使用三氟乙酸盐的金属有机沉积法的煅烧过程中,以不同的加热速率沉积了 Y123 前驱体和最终薄膜。在最终的薄膜中评估了超导特性。还使用透射电子显微镜和能量色散 X 射线光谱研究了这些薄膜的微观结构和化学成分的分布。在200~250℃温度范围内以0.2℃/min的速率加热制备的Y123前驱体薄膜中,Cu分布均匀。另一方面,在200~250℃以5℃/分钟的速度进行热处理而制备的前体膜中,发现Cu在膜表面附近偏析。前体膜中的这种Cu偏析可能导致最终膜的结晶度和超导性能的差异。前者的前驱体薄膜生长为具有良好结晶度的 c 轴取向 Y123 薄膜,并表现出 2 × 106 A/cm2 的高 JC 值。然而,通过热处理后一种前驱体薄膜制备的最终薄膜具有许多 CuO 平面的堆垛层错,并显示出较低的 JC 值,为 0.3 × 106 A/cm2。
  • RARE EARTH-BASED NANOPARTICLE MAGNETIC RESONANCE CONTRAST AGENT AND PREPARATION METHOD THEREOF
    申请人:PEKING UNIVERSITY
    公开号:US20170196997A1
    公开(公告)日:2017-07-13
    A rare earth-based nanoparticle magnetic resonance contrast agent and a preparation method thereof are provided. The rare earth-based nanoparticle magnetic resonance contrast agent is rare earth-based inorganic nanoparticles having the surfaces coated with hydrophilic ligands. The rare earth-based nanoparticles are first obtained by a high-temperature oil phase reaction, and then the surfaces thereof are coated with hydrophilic molecules to obtain the rare earth-based nanoparticle magnetic resonance contrast agent. Compared with the existing clinical contrast agent, the magnetic resonance contrast agent of the present invention has a greatly improved relaxivity, a good imaging effect, a low required injection dose, and long in vivo residence time. In addition, the rigid structure of the inorganic nanoparticles can effectively reduce the leakage possibility of gadolinium ions.
    提供一种基于稀土的纳米颗粒磁共振造影对比剂及其制备方法。该基于稀土的纳米颗粒磁共振造影对比剂是表面涂覆有亲水性配体的稀土基无机纳米颗粒。首先通过高温油相反应获得这些基于稀土的纳米颗粒,然后将其表面涂覆亲水性分子以获得基于稀土的纳米颗粒磁共振造影对比剂。与现有的临床对比剂相比,本发明的磁共振造影对比剂具有大大提高的弛豫率、良好的成像效果、低的注射剂量要求和长的体内滞留时间。此外,无机纳米颗粒的刚性结构可以有效降低钆离子泄漏的可能性。
  • Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors
    作者:Ya-Ping Du、Ya-Wen Zhang、Ling-Dong Sun、Chun-Hua Yan
    DOI:10.1039/b909145a
    日期:——
    reaction temperature and time on the crystal phase purity, shape, and size of the as-prepared nanocrystals have been investigated in detail. The formation of monodisperse nanocrystals is found to strongly depend upon the nature of both alkali metals from Li to K, and the rare earth series from La to Lu and Y. Based on the series of experimental results, a controlled-growth mechanism has also been proposed
    本文报道了具有不同形状(立方KLaF4和KCeF4蠕虫状纳米线,纳米立方体和纳米多面体;立方LiREF4(RE = Pr to Gd,Y)纳米多面体;通过在热油酸/油胺/ 1-中共同加热Li(CF3COO)或K(CF3COO)和RE(CF3COO)3共同热解四方LiREF4(RE = Tb对应Lu,Y)菱形纳米板)十八碳烯溶液。已经详细研究了溶剂组成,反应温度和时间对制备的纳米晶体的晶相纯度,形状和尺寸的影响。发现单分散纳米晶体的形成在很大程度上取决于从Li到K的碱金属以及从La到Lu和Y的稀土系列的性质。基于一系列的实验结果,还提出了一种受控增长机制。另外,评估了为设计的发光特性掺杂这些刚合成的主体纳米晶体的难易程度。例如,单分散和单晶掺杂Eu3 +的KGdF4,Yb3 +和Er3 +共掺杂的LiYF4纳米晶体重新分散在环己烷中,在紫外(UV)激发和近红外(NIR)980 nm激光激发下分别显示可见的室温红色和绿色发射。
  • High Nd(III)-Sensitizer Concentrations for 800 nm Wavelength Excitation Using Isotropic Core–Shell Upconversion Nanoparticles
    作者:Carina Arboleda、Sha He、Alexandra Stubelius、Noah J. J. Johnson、Adah Almutairi
    DOI:10.1021/acs.chemmater.8b04057
    日期:2019.5.14
    Upconverting nanoparticles (UCNPs) are potentially useful for biological applications, if they are capable of high-intensity emission. This requires the highest absorption efficiencies of wavelengths not absorbed or scattered by tissues. 800 nm is considered to be a “biobenign” wavelength because it effectively minimizes signal attenuation and reduces detrimental overheating, while maintaining deep tissue penetration. Neodymium (Nd3+) substitution for ytterbium (Yb3+) in lanthanide-based UCNPs successfully shifts  absorption from 980 nm to 800 nm, where water does not show absorption. High Nd3+ concentrations are desired because the more the sensitizer ions, the higher the absorption and thus the upconversion (UC) emission. However, high Nd3+-sensitized UCNPs, above 30 mol % Nd3+, have been limited because of lattice distortions observed in heavily doped core–shell nanoparticles (CS NPs). Here, we overcome this hurdle by introducing a tensile-strained NaLuF4 shell while still ensuring a complete and thicker isotropic shell. We report 50 mol % Nd3+-sensitized CS NPs that effectively release lattice strain between the core and shell. The doping concentration of 50 mol % Nd3+ provided 13-fold UC enhancement compared to CS NPs without Nd3+ in the shell, independent of the activators examined in this study. This exceptional enhancement in UC emission is due to the maintenance of structural uniformity. We demonstrate cell tolerability by PEGylating CS NPs and incubating the NPs with several cell types to show the potential for biological applications.
    上转换纳米粒子(UCNPs)如果能够实现高强度发射,就有可能用于生物应用。这就要求对不被组织吸收或散射的波长具有最高的吸收效率。800 纳米被认为是 "生物无害 "波长,因为它能有效地减少信号衰减,降低有害的过热现象,同时保持深层组织穿透。在以镧为基础的 UCNP 中,钕(Nd3+)替代镱(Yb3+),成功地将吸收从 980 纳米转移到 800 纳米,而水对该波长没有吸收。之所以需要高浓度的 Nd3+,是因为敏化剂离子越多,吸收率就越高,因此上转换(UC)发射也就越高。然而,由于在重度掺杂的核壳纳米粒子(CS NPs)中观察到的晶格畸变,30 mol % Nd3+ 以上的高 Nd3+ 敏化 UCNPs 一直受到限制。在这里,我们通过引入拉伸应变的 NaLuF4 壳来克服这一障碍,同时还确保了完整且较厚的各向同性壳。我们报告了 50 mol % Nd3+ 敏化 CS NPs,它能有效释放核心与外壳之间的晶格应变。与外壳不含 Nd3+ 的 CS NPs 相比,掺杂浓度为 50 摩尔% 的 Nd3+ 可使 UC 增强 13 倍,这与本研究中考察的活化剂无关。这种超常的 UC 发射增强是由于保持了结构的一致性。我们通过 PEG 化 CS NPs 并将其与多种类型的细胞培养,证明了细胞的耐受性,从而展示了其在生物应用方面的潜力。
  • Desilylation Induced by Metal Fluoride Nanocrystals Enables Cleavage Chemistry In Vivo
    作者:Dongban Duan、Hao Dong、Zhiyu Tu、Chunhong Wang、Qunfeng Fu、Junyi Chen、Haipeng Zhong、Ping Du、Ling-Dong Sun、Zhibo Liu
    DOI:10.1021/jacs.0c10399
    日期:2021.2.10
    equilibrium concentrations of fluoride are often <1 mM. Here we make good use of this minimum amount of fluoride and unveil that metal fluoride nanocrystals could effectively induce desilylation cleavage chemistry, enabling controlled release of fluorophores and drug molecules in test tubes, living cells, and tumor-bearing mice. Biocompatible PEG (polyethylene glycol)-coated CaF2 nanocrystals have been
    金属氟化物纳米晶体由于其独特的物理化学性质而被广泛用于生物医学研究。由于溶解度平衡,金属离子和氟化物从纳米晶体的释放是固有的。它曾经被认为是一个缺点,因为它与金属氟化物纳米晶体的分解和功能有关。已经开发了许多策略来稳定纳米晶体,氟化物的平衡浓度通常 <1 mM。在这里,我们充分利用了这种最少量的氟化物,并揭示了金属氟化物纳米晶体可以有效地诱导脱甲硅烷基裂解化学,从而能够在试管、活细胞和荷瘤小鼠中控制释放荧光团和药物分子。生物相容性 PEG(聚乙二醇)涂层 CaF 2已经制备了纳米晶体来测定脱甲硅烷化诱导的功能分子受控释放的效率。我们将该策略应用于单甲基 auristatin E (MMAE) 的前药激活,显示出显着的抗癌作用,而副作用几乎可以忽略不计。总之,这种去甲硅烷基化诱导的裂解化学利用了赋予金属氟化物纳米晶体新的扰动或激活功能以用于进一步生物应用的缺点。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物