High Nd(III)-Sensitizer Concentrations for 800 nm Wavelength Excitation Using Isotropic Core–Shell Upconversion Nanoparticles
作者:Carina Arboleda、Sha He、Alexandra Stubelius、Noah J. J. Johnson、Adah Almutairi
DOI:10.1021/acs.chemmater.8b04057
日期:2019.5.14
Upconverting nanoparticles (UCNPs) are potentially useful for biological applications, if they are capable of high-intensity emission. This requires the highest absorption efficiencies of wavelengths not absorbed or scattered by tissues. 800 nm is considered to be a “biobenign” wavelength because it effectively minimizes signal attenuation and reduces detrimental overheating, while maintaining deep tissue penetration. Neodymium (Nd3+) substitution for ytterbium (Yb3+) in lanthanide-based UCNPs successfully shifts absorption from 980 nm to 800 nm, where water does not show absorption. High Nd3+ concentrations are desired because the more the sensitizer ions, the higher the absorption and thus the upconversion (UC) emission. However, high Nd3+-sensitized UCNPs, above 30 mol % Nd3+, have been limited because of lattice distortions observed in heavily doped core–shell nanoparticles (CS NPs). Here, we overcome this hurdle by introducing a tensile-strained NaLuF4 shell while still ensuring a complete and thicker isotropic shell. We report 50 mol % Nd3+-sensitized CS NPs that effectively release lattice strain between the core and shell. The doping concentration of 50 mol % Nd3+ provided 13-fold UC enhancement compared to CS NPs without Nd3+ in the shell, independent of the activators examined in this study. This exceptional enhancement in UC emission is due to the maintenance of structural uniformity. We demonstrate cell tolerability by PEGylating CS NPs and incubating the NPs with several cell types to show the potential for biological applications.
上转换纳米粒子(UCNPs)如果能够实现高强度发射,就有可能用于生物应用。这就要求对不被组织吸收或散射的波长具有最高的吸收效率。800 纳米被认为是 "生物无害 "波长,因为它能有效地减少信号衰减,降低有害的过热现象,同时保持深层组织穿透。在以镧为基础的 UCNP 中,钕(Nd3+)替代镱(Yb3+),成功地将吸收从 980 纳米转移到 800 纳米,而水对该波长没有吸收。之所以需要高浓度的 Nd3+,是因为敏化剂离子越多,吸收率就越高,因此上转换(UC)发射也就越高。然而,由于在重度掺杂的核壳纳米粒子(CS NPs)中观察到的晶格畸变,30 mol % Nd3+ 以上的高 Nd3+ 敏化 UCNPs 一直受到限制。在这里,我们通过引入拉伸应变的 NaLuF4 壳来克服这一障碍,同时还确保了完整且较厚的各向同性壳。我们报告了 50 mol % Nd3+ 敏化 CS NPs,它能有效释放核心与外壳之间的晶格应变。与外壳不含 Nd3+ 的 CS NPs 相比,掺杂浓度为 50 摩尔% 的 Nd3+ 可使 UC 增强 13 倍,这与本研究中考察的活化剂无关。这种超常的 UC 发射增强是由于保持了结构的一致性。我们通过 PEG 化 CS NPs 并将其与多种类型的细胞培养,证明了细胞的耐受性,从而展示了其在生物应用方面的潜力。