摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

丙酰辅酶A | 317-66-8

中文名称
丙酰辅酶A
中文别名
——
英文名称
S-propionyl-coenzyme-A
英文别名
propionyl-CoA;propionyl-coenzyme A;S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] propanethioate
丙酰辅酶A化学式
CAS
317-66-8
化学式
C24H40N7O17P3S
mdl
——
分子量
823.606
InChiKey
QAQREVBBADEHPA-IEXPHMLFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 物理描述:
    Solid

计算性质

  • 辛醇/水分配系数(LogP):
    -5.1
  • 重原子数:
    52
  • 可旋转键数:
    21
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    389
  • 氢给体数:
    9
  • 氢受体数:
    22

安全信息

  • WGK Germany:
    3

SDS

SDS:146b8d2e5d9c28edd924973657206104
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    阿米卡星丙酰辅酶A 在 C-terminal histidine-tagged aminoglycoside acetyltransferase(6')-APH(2")(pET22b) 作用下, 反应 0.5h, 生成
    参考文献:
    名称:
    探索化学酶法生成 N-酰化氨基糖苷类药物修饰酶的底物混杂性
    摘要:
    创建合成工具:我们开发了一种化学酶法,使用氨基糖苷乙酰转移酶和酰基辅酶 A 生产 N-酰化氨基糖苷。该方法能够快速生产,然后对合成上具有挑战性的氨基糖苷进行抗菌测试。
    DOI:
    10.1002/cbic.200900584
  • 作为产物:
    描述:
    succinyl-CoA 在 Acetobacter aceti succinyl-CoA:acetate CoA transferase C-terminal hexahistidine-tagged 作用下, 以 aq. buffer 为溶剂, 生成 丙酰辅酶A
    参考文献:
    名称:
    Crystal Structures of Acetobacter aceti Succinyl-Coenzyme A (CoA):Acetate CoA-Transferase Reveal Specificity Determinants and Illustrate the Mechanism Used by Class I CoA-Transferases
    摘要:
    Coenzyme A (CoA)-transferases catalyze transthioesterification reactions involving acyl-CoA substrates, using an active-site carboxylate to form covalent acyl anhydride and CoA thioester adducts. Mechanistic studies of class I CoA-transferases suggested that acyl-CoA binding energy is used to accelerate rate-limiting acyl transfers by compressing the substrate thioester tightly against the catalytic glutamate [White, H., and Jencks, W. P. (1976) J. Biol. Chem. 251, 1688-1699]. The class I CoA-transferase succinyl-CoA:acetate CoA-transferase is an acetic acid resistance factor (AarC) with a role in a variant citric acid cycle in Acetobacter aceti. In an effort to identify residues involved in substrate recognition, X-ray crystal structures of a C-terminally His(6)-tagged form (AarCH6) were determined for several wild-type and mutant complexes, including freeze trapped acetylglutamyl anhydride and glutamyl-CoA thioester adducts. The latter shows the acetate product bound to an auxiliary site that is required for efficient carboxylate substrate recognition. A mutant in which the catalytic glutamate was changed to an alanine crystallized in a closed complex containing dethiaacetyl-CoA, which adopts an unusual curled conformation. A model of the acetyl-CoA Michaelis complex demonstrates the compression anticipated four decades ago by Jencks and reveals that the nucleophilic glutamate is held at a near-ideal angle for attack as the thioester oxygen is forced into an oxyanion hole composed of Gly388 NH and CoA N2 ''. CoA is nearly immobile along its entire length during all stages of the enzyme reaction. Spatial and sequence conservation of key residues indicates that this mechanism is general among class I CoA-transferases.
    DOI:
    10.1021/bi300957f
点击查看最新优质反应信息

文献信息

  • Characterization of Arylalkylamine <i>N</i>-Acyltransferase from <i>Tribolium castaneum</i>: An Investigation into a Potential Next-Generation Insecticide Target
    作者:Brian G. O’Flynn、Eric M. Lewandowski、Karin Claire Prins、Gabriela Suarez、Angelica N. McCaskey、Nasha M. Rios-Guzman、Ryan L. Anderson、Britney A. Shepherd、Ioannis Gelis、James W. Leahy、Yu Chen、David J. Merkler
    DOI:10.1021/acschembio.9b00973
    日期:2020.2.21
    short-chain acyl-CoAs (C2-C10), benzoyl-CoA, and succinyl-CoA functioning in the role of acyl donor. Recombinant TcAANAT0 was expressed and purified from E. coli and was used to investigate the kinetic and chemical mechanism of catalysis. The kinetic mechanism is an ordered sequential mechanism with the acyl-CoA binding first. pH-rate profiles and site-directed mutagenesis studies identified amino acids critical
    杀虫剂抗性问题日益严重,这意味着确定新的杀虫剂目标变得前所未有的重要。芳烷基胺 N-酰基转移酶 (AANATs) 已被建议作为潜在的新目标。这些混杂的酶参与生物胺的 N-酰化以形成 N-酰胺。在昆虫中,这个过程是黑色素、角质层硬化、生物胺去除和脂肪酸酰胺生物合成的关键步骤。表征的每个 AANAT 同种型的独特性质表明每个生物体都容纳了该生物体相对专有的离散 AANAT 组装。这意味着在杀虫剂设计中具有很高的选择性,同时也保持了多药性。此处介绍了对 AANAT 的全面动力学和结构分析,该分析在世界上所有植物商品中最常见的次生害虫之一 Tribolium castaneum 中发现。这种名为 TcAANAT0 的酶催化短链 N-酰基芳基烷基胺的形成,其中短链酰基辅酶 A (C2-C10)、苯甲酰辅酶 A 和琥珀酰辅酶 A 在酰基供体的作用下起作用。从大肠杆菌中表达和纯化重组 TcAANAT0,
  • [EN] METHODS FOR PRODUCING 3-HYDROXY-3-METHYLBUTYRIC ACID<br/>[FR] PROCÉDÉS POUR PRODUIRE DE L'ACIDE 3-HYDROXY-3-MÉTHYLBUTYRIQUE
    申请人:GLOBAL BIOENERGIES
    公开号:WO2016042012A1
    公开(公告)日:2016-03-24
    Described is a method for the conversion of 3-methylcrotonyl-CoA into 3-hydroxy-3- methylbutyric acid comprising the steps of: (a) enzymatically converting 3-methylcrotonyl-CoA into 3-hydroxy-3-methylbutyryl-CoA; and (b) further enzymatically converting the thus produced 3-hydroxy-3-methylbutyryl-CoA into 3-hydroxy-3-methylbutyric acid wherein the enzymatic conversion of 3-hydroxy-3-methylbutyryl-CoA into 3-hydroxy-3-methylbutyric acid according to step (b) is achieved by first converting 3-hydroxy-3-methylbutyryl-CoA into 3-hydroxy-3-methylbutyryl phosphate and then subsequently converting the thus produced 3-hydroxy-3-methylbutyryl phosphate into 3-hydroxy-3-methylbutyric acid.
    描述了一种将3-甲基丙酰辅酶A转化为3-羟基-3-甲基丁酸的方法,包括以下步骤:(a)将3-甲基丙酰辅酶A酶促转化为3-羟基-3-甲基丁酰辅酶A;(b)进一步将所产生的3-羟基-3-甲基丁酰辅酶A酶促转化为3-羟基-3-甲基丁酸,其中根据步骤(b)将3-羟基-3-甲基丁酰辅酶A酶促转化为3-羟基-3-甲基丁酸的方法是首先将3-羟基-3-甲基丁酰辅酶A转化为3-羟基-3-甲基丁酰磷酸,然后随后将所产生的3-羟基-3-甲基丁酰磷酸转化为3-羟基-3-甲基丁酸。
  • [EN] PANTETHENOYLCYSTEINE DERIVATIVES AND USES THEREOF<br/>[FR] DÉRIVÉS DE PANTÉTHÉNOYLCYSTÉINE ET LEURS UTILISATIONS
    申请人:COMET THERAPEUTICS INC
    公开号:WO2020198573A1
    公开(公告)日:2020-10-01
    The present disclosure relates to compounds of Formula (I) or (II): (Formulae (I), (II)), and pharmaceutically acceptable salts or solvates thereof. The present disclosure also relates to pharmaceutical compositions comprising the compounds and therapeutic and diagnostic uses of the compounds and pharmaceutical compositions.
    本公开涉及式(I)或(II)的化合物:(式(I),(II)),以及其药用可接受的盐或溶剂化合物。本公开还涉及包含这些化合物的药物组合物,以及这些化合物和药物组合物的治疗和诊断用途。
  • Cosubstrate Tolerance of the Aminoglycoside Resistance Enzyme Eis from Mycobacterium tuberculosis
    作者:Wenjing Chen、Keith D. Green、Sylvie Garneau-Tsodikova
    DOI:10.1128/aac.00932-12
    日期:2012.11
    ABSTRACT

    We previously demonstrated that aminoglycoside acetyltransferases (AACs) display expanded cosubstrate promiscuity. The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis is responsible for the resistance of this pathogen to kanamycin A in a large fraction of clinical isolates. Recently, we discovered that Eis is a unique AAC capable of acetylating multiple amine groups on a large pool of aminoglycoside (AG) antibiotics, an unprecedented property among AAC enzymes. Here, we report a detailed study of the acyl-coenzyme A (CoA) cosubstrate profile of Eis. We show that, in contrast to other AACs, Eis efficiently uses only 3 out of 15 tested acyl-CoA derivatives to modify a variety of AGs. We establish that for almost all acyl-CoAs, the number of sites acylated by Eis is smaller than the number of sites acetylated. We demonstrate that the order of n -propionylation of the AG neamine by Eis is the same as the order of its acetylation. We also show that the 6′ position is the first to be n -propionylated on amikacin and netilmicin. By sequential acylation reactions, we show that AGs can be acetylated after the maximum possible n -propionylation of their scaffolds by Eis. The information reported herein will advance our understanding of the multiacetylation mechanism of inactivation of AGs by Eis, which is responsible for M. tuberculosis resistance to some AGs.

    摘要 我们以前曾证明氨基糖苷乙酰转移酶(AACs)显示出更大的共底物杂合性。结核分枝杆菌的增强细胞内存活(Eis)蛋白 结核分枝杆菌 是导致该病原体对卡那霉素 A 产生耐药性的主要原因。最近,我们发现 Eis 是一种独特的 AAC,能够对大量氨基糖苷类(AG)抗生素上的多个胺基进行乙酰化,这在 AAC 酶中是前所未有的特性。在这里,我们报告了对 Eis 的酰基辅酶 A(CoA)共底物概况的详细研究。我们发现,与其他 AAC 不同的是,在 15 种测试过的酰基辅酶 A 衍生物中,Eis 只能有效地利用其中的 3 种来修饰各种 AG。我们发现,对于几乎所有的酰基-CoAs,Eis酰化的位点数量都少于乙酰化的位点数量。我们证明 n -乙酰化的顺序相同。我们还证明,6′位最先被 Eis n -丙酰化。通过连续的酰化反应,我们证明了 AG 可在最大可能的 n -乙酰化。本文报告的信息将促进我们对 Eis 使 AGs 失活的多重乙酰化机制的了解,该机制是导致 结核杆菌 对某些 AGs 产生抗药性的原因。
  • [EN] MICROORGANISMS FOR PRODUCING 4C-5C COMPOUNDS WITH UNSATURATION AND METHODS RELATED THERETO<br/>[FR] MICRO-ORGANISMES POUR LA PRODUCTION DE COMPOSÉS EN 4C-5 C AVEC UNE INSATURATION ET PROCÉDÉS ASSOCIÉS
    申请人:GENOMATICA INC
    公开号:WO2016004334A1
    公开(公告)日:2016-01-07
    The invention provides a non-naturally occurring microbial organism having a butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol, pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a pathway. The invention additionally provides a method for producing butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol,. The method can include culturing a butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol-producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a pathway enzyme in a sufficient amount, and under conditions and for a sufficient period of time to produce butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol.
    该发明提供了一种具有丁二烯、丁烯醇、2,4-戊二烯酸酯、3-丁烯-2-醇或3-丁烯-1-醇途径的非自然微生物生物体。该微生物生物体含有至少一个编码途径中酶的外源核酸。该发明还提供了一种生产丁二烯、丁烯醇、2,4-戊二烯酸酯、3-丁烯-2-醇或3-丁烯-1-醇的方法。该方法可以包括培养一种生产丁二烯、丁烯醇、2,4-戊二烯酸酯、3-丁烯-2-醇或3-丁烯-1-醇的微生物生物体,其中该微生物生物体表达至少一个编码途径酶的外源核酸,且在足够的量下,在适当的条件和足够的时间内产生丁二烯、丁烯醇、2,4-戊二烯酸酯、3-丁烯-2-醇或3-丁烯-1-醇。
查看更多