ABSTRACT
We previously demonstrated that aminoglycoside acetyltransferases (AACs) display expanded cosubstrate promiscuity. The enhanced intracellular survival (Eis) protein of
Mycobacterium tuberculosis
is responsible for the resistance of this pathogen to kanamycin A in a large fraction of clinical isolates. Recently, we discovered that Eis is a unique AAC capable of acetylating multiple amine groups on a large pool of aminoglycoside (AG) antibiotics, an unprecedented property among AAC enzymes. Here, we report a detailed study of the acyl-coenzyme A (CoA) cosubstrate profile of Eis. We show that, in contrast to other AACs, Eis efficiently uses only 3 out of 15 tested acyl-CoA derivatives to modify a variety of AGs. We establish that for almost all acyl-CoAs, the number of sites acylated by Eis is smaller than the number of sites acetylated. We demonstrate that the order of
n
-propionylation of the AG neamine by Eis is the same as the order of its acetylation. We also show that the 6′ position is the first to be
n
-propionylated on amikacin and netilmicin. By sequential acylation reactions, we show that AGs can be acetylated after the maximum possible
n
-propionylation of their scaffolds by Eis. The information reported herein will advance our understanding of the multiacetylation mechanism of inactivation of AGs by Eis, which is responsible for
M. tuberculosis
resistance to some AGs.
摘要
我们以前曾证明氨基糖苷乙酰转移酶(AACs)显示出更大的共底物杂合性。结核分枝杆菌的增强细胞内存活(Eis)蛋白
结核分枝杆菌
是导致该病原体对卡那霉素 A 产生耐药性的主要原因。最近,我们发现 Eis 是一种独特的 AAC,能够对大量氨基糖苷类(AG)抗生素上的多个胺基进行乙酰化,这在 AAC 酶中是前所未有的特性。在这里,我们报告了对 Eis 的酰基辅酶 A(CoA)共底物概况的详细研究。我们发现,与其他 AAC 不同的是,在 15 种测试过的酰基辅酶 A 衍生物中,Eis 只能有效地利用其中的 3 种来修饰各种 AG。我们发现,对于几乎所有的酰基-CoAs,Eis酰化的位点数量都少于乙酰化的位点数量。我们证明
n
-乙酰化的顺序相同。我们还证明,6′位最先被 Eis
n
-丙酰化。通过连续的酰化反应,我们证明了 AG 可在最大可能的
n
-乙酰化。本文报告的信息将促进我们对 Eis 使 AGs 失活的多重乙酰化机制的了解,该机制是导致
结核杆菌
对某些 AGs 产生抗药性的原因。