Study of Influential Factors on Oligosaccharide Formation by Fructosyltransferase Activity during Stachyose Hydrolysis by Pectinex Ultra SP-L
摘要:
The influence of reaction conditions for oligosaccharide synthesis from stachyose using a commercial enzymatic preparation from Aspergillus aculeatus (Pectinex Ultra SP-L) was studied. Oligosaccharides were analyzed by gas chromatography with flame ionization detection (GC-FID) and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS). Galactosyl-melibiose (DP3) was synthesized as a result of fructosidase activity, whereas fructosyl-stachyose (DP5) and difructosyl-stachyose (DP6) were formed as a consequence of the fructosyltransferase activity of Pectinex Ultra SP-L. The optimal reaction conditions for the synthesis of penta- and hexasaccharides were 60 degrees C, pH 5.5, 600 mg/mL stachyose, and 34 U/mL enzyme. Reaction time played an important role in oligosaccharide mixture composition constituted by 20% DP5, 0.7% DP6, 55% stachyose, 21% galactosyl-melibiose, and 1% monosaccharides after 1 h and 16% DP5, 4% DP6, 27% stachyose, 44% galactosyl-melibiose, and 2% monosaccharides after 3 h. In conclusion, stachyose could be used as a substrate for the enzymatic synthesis of new oligosaccharides that may open new opportunities in the development of future prebiotics.
The commercial enzyme preparation Pectinex Ultra SP-L containing fructosyltransferase activity was used to hydrolyze stachyose. During this reaction, besides the formation of mono-, di-, and trisaccharides (DP3), the presence of one pentasaccharide (DP5) and a new oligosaccharide (DP6) has been detected by gas chromatography. DP5 and DP6 oligosaccharides were isolated and fully characterized for the first time by an extensive nuclear magnetic resonance (NMR) study. Complete structure elucidation and full proton and carbon assignments were carried out using 1D (H-1, C-13) and 2D (gCOSY, multiplicity-edited gHSQC, gHSQC-TOCSY, and gHMBC) NMR experiments. The two oligosaccharides were shown to be stachyose-based structures; the pentasaccharide has a fructose unit linked to the C-1 of the fructose end of stachyose, and the hexasaccharide has a fructose unit linked to the C-1 of the fructose end of the pentasaccharide. The fructosyltransferase activity present in Pectinex Ultra SP-L allows new uses of this commercial enzyme preparation in the synthesis of oligosaccharides derived from alpha-galactosides.