摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Fe(4,7-dimethyl-1,10-phenanthroline)3(3+) | 17378-76-6

中文名称
——
中文别名
——
英文名称
Fe(4,7-dimethyl-1,10-phenanthroline)3(3+)
英文别名
——
Fe(4,7-dimethyl-1,10-phenanthroline)3(3+)化学式
CAS
17378-76-6
化学式
C42H36FeN6
mdl
——
分子量
680.635
InChiKey
RDIWQNCECNPMGA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

点击查看最新优质反应信息

文献信息

  • Polymer solvent dynamic effects on an electron-transfer cross-reaction rate at a redox polymer/polymer solution interface
    作者:Honghua Zhang、Royce W. Murray
    DOI:10.1021/ja00059a030
    日期:1993.3
    cross-reaction rate constants (k[sub 12]) for the oxidation of polyether solutions of [Fe(4,7-dimethyl-phenanthroline)[sub 3]][sup 2+] at a poly[Os(bpy)[sub 2]/(vpy)[sub 2]][sup 3+] redox polymer surface have been measured as a function of the polyether solvent employed. Previous measurements in monomer solvents produced values of k[sub 12] adherent to a theoretical model incorporating the monomer solvent
    [Fe(4,7-二甲基-咯啉)[sub 3]][sup 2+] 聚醚溶液在聚[Os(bpy)上氧化的电子转移交叉反应速率常数 (k[sub 12]) )[sub 2]/(vpy)[sub 2]][sup 3+] 氧化还原聚合物表面已被测量为所用聚醚溶剂的函数。先前在单体溶剂中的测量产生的 k[sub 12] 值符合结合单体溶剂纵向弛豫时间 (τ[sub L])、介电常数和交叉反应自由能的理论模型。k[sub 12] 的值在聚醚溶剂中较小,这与通过溶剂偶极弛豫时间(τ[sub L][prime])控制的反应速率一致,在聚合物中相对于单体溶剂更长。此外,在预期聚醚链段波动减慢的条件下,k[sub 12] 降低,例如 ,更长的聚醚链长度和增加的 LiClO[sub 4] 和 Zn(CF[sub 3]SO[sub 3])[sub 2] 电解质浓度。聚合物溶液中络合物的扩散系数,由于链段移动性变
  • Gated electron-transfer behavior in copper(II/I) systems. Comparison of the kinetics for homogeneous cross reactions, NMR self-exchange relaxation, and electrochemical data for a copper macrocyclic tetrathioether complex in aqueous solution
    作者:Nancy E. Meagher、Kerri L. Juntunen、Cynthia A. Salhi、L. A. Ochrymowycz、D. B. Rorabacher
    DOI:10.1021/ja00052a042
    日期:1992.12
    The kinetics of electron-transfer reactions involving Cu II/I ([14]aneS 4 ) reacting with a series of selected counterreagents have been measured in aqueous solution at 25 o C, r=0.10 M (ClO 4 - ).
    在 25 o C、r=0.10 M (ClO 4 - ) 的溶液中测量了涉及 Cu II/I ([14]aneS 4 ) 与一系列选定反试剂反应的电子转移反应动力学。
  • Electron-Transfer Kinetics for Generation of Organoiron(IV) Porphyrins and the Iron(IV) Porphyrin π Radical Cations
    作者:Shunichi Fukuzumi、Ikuo Nakanishi、Keiko Tanaka、Tomoyoshi Suenobu、Alain Tabard、Roger Guilard、Eric Van Caemelbecke、Karl M. Kadish
    DOI:10.1021/ja982136r
    日期:1999.2.1
    electron-transfer kinetics for the oxidation of seven different iron(III) porphyrins using three different oxidants were examined in deaerated acetonitrile, and the resulting data were evaluated in light of the Marcus theory of electron transfer to determine reorganization energies of the rate-determining oxidation of iron(III) to iron(IV). The investigated compounds are represented as (P)Fe(R), where
    在脱气乙腈中检查了使用三种不同氧化剂氧化七种不同 (III) 卟啉的均相电子转移动力学,并根据马库斯电子转移理论评估所得数据,以确定速率决定的重组(III)氧化成(IV)。研究的化合物表示为 (P)Fe(R),其中 P = 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin (OETPP) 的二价阴离子并且 R = C6H5、3,5-C6F2H3、2,4,6-C6F3H2 或 C6F5 或 P = 2,3,7,8,12,13,17,18-八乙基卟啉 (OEP) 的二价阴离子,R = 、2,4,6-C6F3H2 或 2,3,5,6-C6F4H。从 (P)Fe(R) 到 [Ru(bpy)3]3+ (bpy = 2,2'-联吡啶) 的第一个单电子转移导致 Fe(IV) σ 键合络合物,[(P) FeIV(R)]+
  • Pelizzetti, Ezio; Pramauro, Edmondo; Croce, Daniele, Berichte der Bunsen-Gesellschaft, 1980, vol. 84, # 3, p. 265 - 270
    作者:Pelizzetti, Ezio、Pramauro, Edmondo、Croce, Daniele
    DOI:——
    日期:——
  • Effect of Conformational Constraints on Gated Electron-Transfer Kinetics. A Multifaceted Study on Copper(II/I) Complexes with cis- and trans-Cyclohexanediyl-[14]aneS4
    作者:Cynthia A. Salhi、Qiuyue Yu、Mary Jane Heeg、Nicole M. Villeneuve、Kerri L. Juntunen、Ronald R. Schroeder、L. A. Ochrymowycz、D. B. Rorabacher
    DOI:10.1021/ic00128a016
    日期:1995.11
    A multifaceted study has been conducted on the electron-transfer reactions of the copper(II/I) complexes formed with 2,3-cis- and 2,3-trans-cyclohexanediyl-1,4,8,11-tetrathiacyclotetradecane (designated as cis- and tmns-cyhx-[14]aneS(4)). Each system has been studied by (i) H-1-NMR line broadening in D2O to determine the electron self-exchange rate constants at zero driving force, (ii) rapid-scan cyclic voltammetry in 80% methanol-20% water (w/w) to determine the rate constants for conformational changes and heterogeneous electron transfer, and (iii) stopped-flow spectrophotometry using a total. of eight oxidizing and reducing counterreagents to determine the cross-reaction electron-transfer rate constants from which self-exchange rate constants can be calculated for various driving forces. The crystal structures of both Cu(II)L complexes and of Cu-I(trans-cyhx-[14]aneS(4)) have also been determined. From the NMR measurements, the electron self-exchange rate constants have been evaluated [at 25 degrees C, mu = 0.10 M (NO3-)] as k(11(ex)) = (5.0 +/- 0.5) x 10(4) and less than or equal to 10(3) M(-1) s(-1) for Cd-II/I(cis-) and Cu-II/I(trans-cyhx-[14]aneS(4)), respectively. Application of the Marcus relationship to the numerous cross-reaction rate constants yields variable behavior which is consistent with a dual-pathway mechanism for which the following self-exchange rate constants have been resolved [25 degrees C, mu = 0.10 M (ClO4-)]: for Cu-II/I(cis-cyhx-[14]aneS(4)), k(11(A)) = 5 x 10(4), k(11(B)) less than or equal to 10 M(-1) s(-1); for Cu-II/I(trans-cyhx-[14]aneS(4)), k(11(A)) = 2 x 10(3), k(11(B)) less than or equal to 10 M(-1) s(-1). The reduction reactions proceed by the most favorable pathway (pathway A) involving a metastable Cu(I)L intermediate (P) while the limiting oxidation reactions proceed by an alternate pathway (pathway B) involving a less stable Cu(II)L intermediate (Q). The change in pathway is mediated by the rate constant (k(RP)) for the formation of the Cu(I)L(P) intermediate from the stable Cu(I)L(R) complex. This latter rate constant has been estimated from both cyclic voltammetric measurements (CV, 80% methanol) and Cu(I)L homogeneous oxidation kinetics (Ox, H2O) as follows [25 degrees C]: for Cu-I(cis-cyhx-[14]aneS(4)), k(RP) = 4.4 x 10(2) (CV) and 1.1 x 10(2) s(-1) (Ox); for Cu-I(trans-cyhx-[14]aneS(4)), k(RP) = 1.5 x 10(2) (CV) and 32 s(-1) (Ox). The values obtained from homogeneous oxidations are believed to be the more reliable. The crystal structures reveal that both Cu(II)L complexes are square pyramidal with the four sulfur donor atoms occupying the basal plane and a coordinated water molecule (or anion) at the apex. The Cu-I(trans-cyhx-[14]aneS(4)) complex is in a flattened tetrahedral geometry in which all four sulfur donor atoms remain coordinated. These structures imply that, for each Cu(III)L system, two sulfur donor atoms must invert during the overall electron-transfer process. It is postulated that these donor atom inversions may represent the primary barrier for the conformational change represented in the R --> P step.The self-exchange rate constant representative of the electron-transfer step itself, corrected for the separate conformational change step, is estimated to be on the order of 10(6) M(-1) s(-1) for both systems, equivalent to the largest self-exchange rate constants known for rigid Cu(II/I)L systems. Crystal data [Mo K alpha radiation (lambda = 0.710 73 Angstrom)] are as follows. For [Cu-II(cis-cyhx-[14]aneS(4))(H2O)](ClO4)(2) (1): CuS4C14H28Cl2O9, triclinic system, space group P $(1) over bar$$, a = 9.734(4) Angstrom, b = 10.155(3) Angstrom, c = 13.058(4) Angstrom, alpha = 91.73(2)degrees, beta = 91.52(3)degrees, gamma = 117.75(3)degrees, V = 1140.6(7) Angstrom(3), Z = 2, R = 0.049, R(w) = 0.050, T = -110 degrees C. For [Cu-II(trans-cyhx-[14]aneS(4))(H2O)](ClO4)(2) (2a): CuS4Cl4H28Cl2O9, triclinic system, space group P $(1) over bar$$, a = 9.177(5) Angstrom, b = 10.641(5) Angstrom, c = 13.037(4) Angstrom, alpha = 87.26(3)degrees, beta = 88.13(4)degrees, gamma = 69.19(3)degrees, V = 1188.5(8) Angstrom(3), Z = 2, R = 0.050, R(w) = 0.056, T = -110 degrees C. For [Cu-II(trans-cyhx-[14]aneS(4))Cl]. 1/2CuCl(4) . H2O (2b): Cu1.5C14H28S4Cl3O, orthorhombic system, space group Pbcn, a = 28.206(7) Angstrom, b = 10.115(3) Angstrom, c = 14.707(2) Angstrom, V = 4196(2) Angstrom(3), Z = 8, R = 0.038, R(w) = 0.042, T = 22 degrees C. For [Cu-I(trans-cyhx-[14] aneS(4))]ClO4 . 1/4H(2)O (3): CuS4C14H26.5ClO4.25, monoclinic system, space group P2(1)/n, a = 10.135(2) Angstrom, b = 16.044(2) Angstrom, c = 12.675(2) Angstrom, beta = 105.10(1)degrees, V = 1989.9(5) Angstrom(3), Z = 4, R = 0.038, R(w) = 0.038, T = -110 degrees C.
查看更多