516,444. Acetylene-cyclopentanophenanthrene compounds. SOC. OF CHEMICAL INDUSTRY IN BASLE. June 27, 1938, Nos. 18992, 18993, 18994 and 18995. Convention dates, June 26, 1937, Aug. 7, 1937, Jan. 18, 1938, and May 12, 1938. [Class 2 (iii)] Acetylene derivatives of the cyclopentanopolyhydrophenanthrene series are-prepared by the reaction of a ketohe of this series with a metal salt of an acetylene or a monosubstituted acetylene in a homogenous liquid phase, and the addition product so produced is hydrolysed or treated with an alkylating or an acylating agent. Parent materials are saturated or unsaturated ketones of the above series, and those specified include the androstanolones such as androsterones or dihydro-testosterones, androstenolones such as dehydroandrosterones, androstane-diones, androstene-diones, oestrone hexahydro-oestrone, equiline, pregnanolones, pregnenolones, pregnane-diones, and pregnenediones. Metal salts of acetylenes or substituted acetylenes includes compounds in which the hydrogen atom of a -C#CH group is replaced by an equivalent of a metal such as sodium potassium, lithium; or copper salts. Substituted acetylenes mentioned include phenylacetylene, acetylene carboxylic acids such as acetylene acetic acid, acetylene propionic acid, acetylene butyric acid, acetylene malonic acid and derivatives of these, such as salts, esters or amides. The reaction may be conducted in the presence of liquid ammonia, an amine such as aniline, an alkylated aniline, pyridine, piperidine, or quinoline, or in the presence of a tertiary alcohol such as tertiary butyl or amyl alcohol. An additional solvent such as an ether or an aromatic hydrocarbon may also be present. Previously prepared solutions of the metal acetylide may be used such as are formed by conducting acetylene into a solution of an alkali metal or alkali amide in anhydrous ammonia, or by introducing an alkali metal or an alkali amide into a solution of acetylene in anhydrous ammonia or in a tertiary alcohol. The addition product which possesses the general formula where R is hydrogen or a substituted or non- substituted hydrocarbon or carboxyl group and Me is a metal hydrolysed by water or acid to the corresponding tertiary alcohol or is reacted with an alkylating agent to produce an ether or with an acylating agent to produce an ester. Alkylating agents mentioned include alkyl or alkylene halides such as methyl iodide, propyl iodide, alkyl bromide, benzyl bromide, chloromethyl ether, triarylmethyl chlorides, and the reactive esters of alcohols such as dialkyl sulphates. Acylating agents mentioned include acid halides such as acetyl-, propionyl-., and benzoyl-chloride, toluene sulpho-chloride, chlorocarbonic acid esters and acid anhydrides. In examples (1) potassium is dissolved in liquid ammonia cooled with acetone and carbonic acid snow. Acetylene is led into the blue solution until it is decolourized, and a benzene solution of trans-dehydroandrosterone is added. Ice is added and the unreacted parent ketone is removed and the residue comprising #<;5>;.<;6>;-17- ethinyl-androstene-diol-3:17 is crystallized. On acetylation with acetic anhydride in pyridine at room temperature the corresponding monoacetate is formed. (2) Trans-androsterone is condensed with acetylene as in example (1) to give 17-ethinyl-androstane-diol-3:17. (3) The #<;5À6>;-17 ethinyl-androstene diol-3:17 prepared in example (1) is acetylated with acetic anhydride in pyridine at raised temperature to form the corresponding diacetate. (4) An ether solution of 1-ethinyl-propionic acid ethyl ester is added to a solution of sodium in liquid ammonia cooled as in example (1). An ether-benzene solution of trans-dehydroandrosterone is now added and the product worked up as in example (1) to give a condensation product of the formula The 1-ethinyl-propionic acid ethyl ester may be made by passing acetylene into a solution of sodium in liquid ammonia, adding benzene, evaporating the ammonia, and treating the product with alphabromopropionic acid ethyl ester. (5) A solution of potassium in tertiary butyl alcohol is added to a solution of acetylene in dry ether at -20C., and an ether solution of trans-dehydroandrosterone added. The product is then worked up as before to give #<;5.6>;-17-ethinyl-androstene-diol-3:17. (6) Transandrosterone is reacted with acetylene as in example (5) to give 17-ethinyl-androstane-diol- 3:17. (7) Acetylene is passed into a solution of potassium in liquid ammonia and a solution of oestrone in dioxane added. The product is worked up to give 17-ethinyl-oestradiol-3:17. The corresponding diacetate is prepared by heating with pyridine and acetic anhydride. Specification 468,123 is referred to. The Specification as open to inspection under Sect. 91 includes also as parent materials aetio-cholenyl-17-aldehydes, compounds of the suprannal cortical hormone series, cholestanone, and cholestenone. The metal salts which may be used include also rubidium, caesium and silver salts of acetylene or mono-substituted acetylenes. Moreover the use of previously prepared suspensions of the metal acetylide may be used. 'The derivatives of the compounds formed by the process of the present invention includes also glucosides. This subject-matter does not appear in the Specification as accepted.;5.6>;5À6>;6>;5>