Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents
摘要:
A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 mu M concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities. (C) 2016 Elsevier Masson SAS. All rights reserved.
A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 mu M concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities. (C) 2016 Elsevier Masson SAS. All rights reserved.
A New Discovery of Unique 13-(Benzimidazolylmethyl)berberines as Promising Broad-Spectrum Antibacterial Agents
produce 13-(benzimidazolylmethyl)berberines (BMB) as potentially broad-spectrum antibacterial agents with the hope of confronting multidrug-resistantbacterialinfections in the livestock industry. Some of the newly prepared hybrids showed obvious antibacterial effects against tested strains. Particularly, 13-((1-octyl-benzimidazolyl)methyl)berberine 6f (OBMB-6f) was found to be the most promising compound