摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

α-D-glucopyranose-1,2,3,4,6-pentakis[3,5-bis(phenylmethoxy)benzoate]

中文名称
——
中文别名
——
英文名称
α-D-glucopyranose-1,2,3,4,6-pentakis[3,5-bis(phenylmethoxy)benzoate]
英文别名
[(2R,3R,4S,5R,6R)-3,4,5,6-tetrakis[[3,5-bis(phenylmethoxy)benzoyl]oxy]oxan-2-yl]methyl 3,5-bis(phenylmethoxy)benzoate
α-D-glucopyranose-1,2,3,4,6-pentakis[3,5-bis(phenylmethoxy)benzoate]化学式
CAS
——
化学式
C111H92O21
mdl
——
分子量
1761.94
InChiKey
DTCCMIRRGOXHQF-CLIVJKMPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    23.6
  • 重原子数:
    132
  • 可旋转键数:
    46
  • 环数:
    16.0
  • sp3杂化的碳原子比例:
    0.14
  • 拓扑面积:
    233
  • 氢给体数:
    0
  • 氢受体数:
    21

反应信息

  • 作为反应物:
    描述:
    α-D-glucopyranose-1,2,3,4,6-pentakis[3,5-bis(phenylmethoxy)benzoate] 在 palladium on activated charcoal 氢气 作用下, 以 四氢呋喃 为溶剂, 反应 16.0h, 以83.7%的产率得到[(2R,3R,4S,5R,6R)-3,4,5,6-tetrakis[(3,5-dihydroxybenzoyl)oxy]oxan-2-yl]methyl 3,5-dihydroxybenzoate
    参考文献:
    名称:
    Synthesis and Structure−Activity Relationship Study of Antidiabetic Penta-O-galloyl-d-glucopyranose and Its Analogues
    摘要:
    The rapid increase of obesity-associated diabetes has created urgent demands for more effective antidiabetic therapies and pharmaceuticals that are able to address the problems of hyperglycemia and weight gain simultaneously. Our previous studies indicated that the alpha- and beta-anomers of penta-O-galloyl-D-glucopyranose (PGG), 2 and 3, act as insulin mimetics that bind to and activate the insulin receptor, stimulate glucose transport in adipocytes, and reduce blood glucose and insulin levels in diabetic and obese animals. In addition, they inhibit differentiation of preadipocytes into adipocytes. These activities suggest that 2 and 3 may reduce blood glucose without increasing adiposity. To investigate the structure-activity relationship of 2 and 3, four series of novel compounds were prepared and their glucose transport stimulatory activities were measured using a radioactive glucose uptake bioassay. The assay results indicate that both the glucose and the galloyl groups are critical to the activity of 2 and 3. It appears that the glucose core provides an optimal scaffold to present the galloyl groups with the correct spatial orientation to induce activity. Moreover, the galloyl groups linked to the 1, 2, 3, and 4 positions of glucose are essential, while the galloyl group connected to the 6 position of 2 is unnecessary for the induction of activity. The discovery that two related novel compounds, 6-deoxytetra-O-galloyl-alpha-D-glucopyranose (43) and tetra-O-galloyl-alpha-D-xylopyranose (59), also possess glucose transport stimulatory activity suggests that 2 may be further modified around position 6 to modulate and enhance its efficacy. To test this hypothesis, we developed a new synthetic method that allows for the stereoselective preparation of derivatives of 2 that are modified on C-6. We found that 6-chloro-6-deoxy- 1,2,3,4-tetra-O-galloyl-alpha-D-glucopyranose (80) exhibits a significantly higher glucose transport stimulatory activity than 2. Its activity is comparable to that of insulin.
    DOI:
    10.1021/jm060087k
  • 作为产物:
    描述:
    a-无水葡萄糖酯3,5-二苄氧基苯甲酸4-二甲氨基吡啶N,N'-二环己基碳二亚胺 作用下, 以 二氯甲烷 为溶剂, 反应 18.0h, 以39.3%的产率得到α-D-glucopyranose-1,2,3,4,6-pentakis[3,5-bis(phenylmethoxy)benzoate]
    参考文献:
    名称:
    Synthesis and Structure−Activity Relationship Study of Antidiabetic Penta-O-galloyl-d-glucopyranose and Its Analogues
    摘要:
    The rapid increase of obesity-associated diabetes has created urgent demands for more effective antidiabetic therapies and pharmaceuticals that are able to address the problems of hyperglycemia and weight gain simultaneously. Our previous studies indicated that the alpha- and beta-anomers of penta-O-galloyl-D-glucopyranose (PGG), 2 and 3, act as insulin mimetics that bind to and activate the insulin receptor, stimulate glucose transport in adipocytes, and reduce blood glucose and insulin levels in diabetic and obese animals. In addition, they inhibit differentiation of preadipocytes into adipocytes. These activities suggest that 2 and 3 may reduce blood glucose without increasing adiposity. To investigate the structure-activity relationship of 2 and 3, four series of novel compounds were prepared and their glucose transport stimulatory activities were measured using a radioactive glucose uptake bioassay. The assay results indicate that both the glucose and the galloyl groups are critical to the activity of 2 and 3. It appears that the glucose core provides an optimal scaffold to present the galloyl groups with the correct spatial orientation to induce activity. Moreover, the galloyl groups linked to the 1, 2, 3, and 4 positions of glucose are essential, while the galloyl group connected to the 6 position of 2 is unnecessary for the induction of activity. The discovery that two related novel compounds, 6-deoxytetra-O-galloyl-alpha-D-glucopyranose (43) and tetra-O-galloyl-alpha-D-xylopyranose (59), also possess glucose transport stimulatory activity suggests that 2 may be further modified around position 6 to modulate and enhance its efficacy. To test this hypothesis, we developed a new synthetic method that allows for the stereoselective preparation of derivatives of 2 that are modified on C-6. We found that 6-chloro-6-deoxy- 1,2,3,4-tetra-O-galloyl-alpha-D-glucopyranose (80) exhibits a significantly higher glucose transport stimulatory activity than 2. Its activity is comparable to that of insulin.
    DOI:
    10.1021/jm060087k
点击查看最新优质反应信息

文献信息

  • [EN] GP120 -BINDING BENZENE COMPOUNDS AND SACCHARIDE COMPOUNDS<br/>[FR] COMPOSÉS DE BENZÈNES ET DE SACCHARIDES SE LIANT À GP120
    申请人:UNIV LEUVEN KATH
    公开号:WO2011085454A1
    公开(公告)日:2011-07-21
    The present invention provides for novel benzene compounds and saccharide compounds and for the use of said compounds for binding, titration (quantification), removing, purifying or separating the glycoprotein gp120, gp120 comprising viruses or cells infected with gp120 comprising viruses. The invention also provides for a method for the detection, binding, titration (quantification), removal, purification or separation of (or directing therapeutic or other agents to) gp120, gp120 comprising viruses or cells infected with gp120 comprising viruses. The invention further provides for the use of the compounds and for methods using the compounds for directing anti -viral drugs or other agents to gp120 comprising viruses or to gp120 comprising virus - infected cells. The present invention also provides processes for the preparation of said novel compounds.
    本发明提供了新型苯化合物和糖化合物,并用于结合、滴定(定量)、去除、纯化或分离含有糖蛋白gp120的化合物的用途,该gp120包括病毒或感染有包含gp120病毒的细胞。本发明还提供了一种用于检测、结合、滴定(定量)、去除、纯化或分离(或将治疗或其他药物引导至)gp120的方法,该gp120包括病毒或感染有包含gp120病毒的细胞。本发明进一步提供了利用这些化合物的用途,以及用于将抗病毒药物或其他药物引导至含有gp120的病毒或含有gp120病毒感染细胞的方法。本发明还提供了用于制备这些新型化合物的工艺。
  • Synthesis and Structure−Activity Relationship Study of Antidiabetic Penta-<i>O</i>-galloyl-<scp>d</scp>-glucopyranose and Its Analogues
    作者:Yulin Ren、Klaus Himmeldirk、Xiaozhuo Chen
    DOI:10.1021/jm060087k
    日期:2006.5.1
    The rapid increase of obesity-associated diabetes has created urgent demands for more effective antidiabetic therapies and pharmaceuticals that are able to address the problems of hyperglycemia and weight gain simultaneously. Our previous studies indicated that the alpha- and beta-anomers of penta-O-galloyl-D-glucopyranose (PGG), 2 and 3, act as insulin mimetics that bind to and activate the insulin receptor, stimulate glucose transport in adipocytes, and reduce blood glucose and insulin levels in diabetic and obese animals. In addition, they inhibit differentiation of preadipocytes into adipocytes. These activities suggest that 2 and 3 may reduce blood glucose without increasing adiposity. To investigate the structure-activity relationship of 2 and 3, four series of novel compounds were prepared and their glucose transport stimulatory activities were measured using a radioactive glucose uptake bioassay. The assay results indicate that both the glucose and the galloyl groups are critical to the activity of 2 and 3. It appears that the glucose core provides an optimal scaffold to present the galloyl groups with the correct spatial orientation to induce activity. Moreover, the galloyl groups linked to the 1, 2, 3, and 4 positions of glucose are essential, while the galloyl group connected to the 6 position of 2 is unnecessary for the induction of activity. The discovery that two related novel compounds, 6-deoxytetra-O-galloyl-alpha-D-glucopyranose (43) and tetra-O-galloyl-alpha-D-xylopyranose (59), also possess glucose transport stimulatory activity suggests that 2 may be further modified around position 6 to modulate and enhance its efficacy. To test this hypothesis, we developed a new synthetic method that allows for the stereoselective preparation of derivatives of 2 that are modified on C-6. We found that 6-chloro-6-deoxy- 1,2,3,4-tetra-O-galloyl-alpha-D-glucopyranose (80) exhibits a significantly higher glucose transport stimulatory activity than 2. Its activity is comparable to that of insulin.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物